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ABSTRACT

Real-time nowcasting is an assessment of current economic conditions from timely released

economic series (such as monthly macroeconomic data) before the direct measure (such as quarterly

GDP figure) is disseminated. Dynamic factor models (DFMs) are widely used in econometrics to

bridge series with different frequencies and achieve a reduction in dimensionality. However, most

of the research using DFMs often assumes the number of factors is known. In this dissertation,

we first develop a Bayesian approach to provide a way to deal with unbalanced feature of the data

set and to estimate latent common factors when the number of factors is assumed to be fixed and

known. Then we extend our method such that it can identify the unknown number of factors and

estimate the latent dynamic factors of DFMs accurately in a real-time nowcasting framework. The

proposed method can deal with the unbalanced data, which is typical of a real-time nowcasting

analysis. We demonstrate the validity of our approach through simulation studies and explore

the applicability of our approach through empirical studies in nowcasting China’s GDP or US

GDP using monthly data series of several categories in each country’s market respectively. The

simulation studies and empirical studies indicate that our Bayesian approach is a viable option to

conduct real-time nowcasting for China’s and US’s quarterly GDP.
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CHAPTER 1. INTRODUCTION

A real time nowcasting is a process to assess or reconstruct current-quarter GDP from timely

released economic and financial series before the figure is disseminated in order to gauge the overall

macroeconomic conditions in real time. This is of interest because most data are released with

a lag and are subsequently released. In principle, any release, no matter at what frequency, may

potentially affect current-quarter estimates and their precision. Both forecasting and nowcasting

are important tasks for central banks due to the following, including but not limited to, two

reasons. Firstly, many policy decisions, including monetary policy, need to be made in real time

and are based on assessments of current and future economic conditions. Secondly, to central

banks, estimated current-quarter GDP figures are often used as relevant inputs for model-based

longer-term forecasting exercises in the banks.

Real time nowcasting faces some challenges. The first one is how to bridge information contained

in monthly data with the quarterly GDP. Baffigi et al. (2004), Rünstler and Sédillot (2003), Kitchen

and Monaco (2003) study the idea of bridge equations which use small models to “bridge” the

information contained in one or a few key monthly data series with the quarterly growth rate of

GDP. However, they involve judgmental nowcasts and only deal with a few monthly data series.

Then, how to deal with a large number of monthly data series becomes the second challenge. The

use of factor models (FMs) for macroeconomic forecasting is now standard at central banks and

other institutions. Many authors, such as Boivin and Ng (2005), Forni et al. (2005), D’Agostino

and Giannone (2006), have shown that these models are successful in this regard. But FMs have

not been used specifically for the problem of nowcasting in real time. The third challenge is

that a large number of monthly data series are released at alternative times and with different

lags, causing unbalanced data at the end of the sample. In real time, some data are released at

the beginning of the month, some are in the middle, and some are at the end. Consequently,
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the underlying data sets are unbalanced at end of the sample (i.e. at a real time when a new

release happens). Some authors, including Croushore and Stark (2001), Koenig et al. (2003) and

Orphanides (2002), discussed about this issue, but focused on data revisions and its implications,

instead of statistical estimation. Appropriately dealing with this “jagged edge” feature of the data

is the key for producing a nowcast by exploiting information in the most recent releases, and it has

a chance to compete with judgmental nowcasts.

Giannone et al. (2008) provided a frequentist inference framework for the parametric dynamic

factor models, and takes advantages of different data releases throughout the month and updates

the nowcast based on each new data release. They use dynamic factor models (DFMs) to bridge

monthly information with quarterly GDP and achieve a reduction in the dimensionality of the

monthly data. The framework also formalizes the updating of the GDP nowcast as monthly data

are released throughout the quarter. They combined principal component analysis (PCA) together

with modified Kalman Filter (KF) to deal with the jagged edge feature of the data. Hereafter, we

call the method proposed in Giannone et al. (2008) the GRS approach.

Since invented, the GRS approach has been implemented in many applications. Yiu and Chow

(2011) nowcasted Chinese GDP using the GRS approach and discovered that interest rate data

is the single most important category of economic series in estimating current-quarter GDP in

China. Chernis and Sekkel (2017) showed that in a pseudo-real-time setting, the DFM outperformed

univariate benchmarks as well as other commonly used nowcasting models, such as mixed-data

sampling and bridge regressions, when nowcasting Canada’s GDP growth. For the US market, the

Federal Reserve Bank of New York published a platform called the New York Fed Staff Nowcast

which has been estimating the US’s GDP growth for the current and subsequent quarter, based on

data released over the course of each week since April 2016. The behind-the-scenes methodology

of the platform is built on the GRS approach and details can be found in Aarons et al. (2016) and

Bok et al. (2018).

Based on the DFMs in Giannone et al. (2008), we propose a Bayesian Markov Chain Monte

Carlo (MCMC) based inference framework which provides a more natural way to deal with the
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“jagged edge” feature of the data and generates timely nowcast results of quarterly GDP in Chap-

ter 2. Hereafter, we refer our Bayesian approach as the BAY method. There are some differences

between the BAY method and the GRS method. One, the GRS approach parameterizes the vari-

ance matrix of monthly information data series to be a diagonal matrix to offer convenience of

solving the unbalanced data issue, while we consider non-zero cross-sectional correlations. Two,

the GRS approach estimates parameters and latent factors in multi-steps, i.e. first using PCA to

obtain parameter estimates and then using KF to obtain latent factor estimates, while we combine

estimation of all parameters and factors. We integrate all into one single estimation framework so

that uncertainty of parameters and latent variables can be taken into account simultaneously and

inferences are readily made based on posterior draws after the burn-in period. Through simula-

tion studies, we evaluate our BAY approach based on the accuracy of estimated latent factors and

nowcasting results. We also investigate the applicability of our approach by applying it to nowcast

annual growth rates of China’s quarterly GDP using monthly released data series in several cate-

gories, including industrial production, fixed asset investment, external sector, money market and

financial market in China.

All the above applications of the GRS approach, along with the BAY approach proposed in

Chapter 2 has two fundamental assumptions. They assume the number of factors of DFMs is

fixed and given, while in reality it is unknown to us. In practice, people determine the number of

factors by looking at the cumulative proportions of variances explained by the first few principal

components from PCA. It is a rather subjective choice. The second key assumption is that the

volatilities of macroeconomic series are treated as constant over time. In the past decade, macro

empirical literature has been paying close attention to time-varying parameters. Many papers,

such as Primiceri (2005), Cogley and Sargent (2005), and Benati and Surico (2008), mentioned

that characterizing macroeconomic data with constant parameter models is deficient, and the form

of slow, continuous, and time-varying parameters is much more desirable. Negro and Otrok (2008)

bridged the literature on factor models with the literature on parameter instability by considering

DFMs with time-varying factor loadings and stochastic volatility (SV). Clark (2011) focused on



www.manaraa.com

4

adding SV to density forecasts of US’s GDP growth, unemployment, inflation, and the federal funds

rate from Bayesian Vector Autoregression (BVAR) analyses and discovered material improvements

in the real-time accuracy of density forecasts and the accuracy of point forecasts when SV was

taken into consideration.

We relax the above two assumptions, allowing the DFM to have an unknown number of factors

in Chapter 3, and the volatility of macroeconomic data to vary over time in Chapter 4. We make

modifications and improvements to our BAY approach to handling these two changes. Time-varying

factor loadings are beyond the scope of this dissertation. The improved BAY approach addresses

the unknown number of latent factors and SV by consolidating ideas from prior work. Zhang et

al. (2013) proposed a Bayesian method of estimating the covariance matrices in the form of a

factor model with an unknown number of latent factors by introducing binary indicators for factor

selections. We adopt the idea and introduce a binary indicator to a set of candidate latent factors.

If the data suggests a certain factor to be selected, the binary indicator will return 1 for that factor,

and 0 otherwise. By counting how many 1’s, we get an estimate of the number of latent factors.

Follett and Yu (2019) introduced a SV model in the framework of vector autoregression (VAR) that

involves the comovement of the time-changing variances across series. The time-varying volatility

is achieved by allowing a static correlation matrix generated from an Lewandowski, Kurowicka,

and Joe (LKJ) prior proposed in Lewandowski et al. (2009), and a random walk process for the

variance of each individual time series. They also proposed to use the particle Gibbs with backward

simulation algorithm to estimate the time-varying volatility parameters effectively. The alogrithm

is directly used in our MCMC algorithm to generate posterior samples for SV.

We are not the first one to consider estimating the number of factors. Bai and Ng (2002, 2006)

proposed a class of information criteria and showed the number of factors could be consistently

estimated using those criteria in a large panel of data setting in DFMs. Alternative methods

that involve the calculation of eigenvalues of the sample covariance matrix are available, including

Onatski (2009, 2010) and Ahn and Horenstein (2013) who considered the estimation of the number

of factors in approximate factor models and generalized dynamic factor structure. Our BAY ap-
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proach is fundamentally different from these approaches in the following aspects. First, we resolve

the problem of unknown number of factors using a Bayesian framework, while they approached the

question using a frequentist view. Second, we estimate the number of factors within a nowcasting

set-up, while they isolated the question on its own and did not consider forecasting/nowcasting.

Third, we consider time-varying volatility while they assumed constant volatility. Through simula-

tion studies, we evaluate our BAY approach based its accuracy in estimating the unknown number

of factors and the latent state variables (dynamic factors and SV), and its effectiveness in producing

reliable nowcasts in real time. We also investigate the applicability of our approach by applying it

to nowcast US’s quarterly GDP growth using monthly released data series in several categories in

the US market.

The rest of this dissertation is organized as follows. In Chapter 2, we present the results from

the simulation and empirical studies using Chinese market data when the number of latent factors is

assumed to be fixed and known. In Chapter 3, we show the results from the simulation and empirical

studies using US’s market data when the number of latent factors is unknown. In Chapter 4 we

extend the model in pervious chapter to allow time-varying volatility and show results from the

simulation and empirical studies using US’s market data based on extended SV model. Chapter 5

concludes the dissertation.
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CHAPTER 2. NOWCASTING GDP USING DYNAMIC FACTOR MODEL

WITH KNOWN NUMBER OF FACTORS

In this chapter, we use dynamic factor models to bridge monthly information with quarterly

GDP and achieve reduction in the dimensionality of the monthly data assuming the number of

factors is fixed and known. We develop a Bayesian approach to provide a way to deal with unbal-

anced feature of the dataset and to estimate latent common factors. We demonstrate the validity

of our approach through simulation studies, and explore the applicability of our approach through

an empirical study in nowcasting China’s GDP using 117 monthly data series of several categories

in Chinese market.

2.1 Structure of Dataset and the GRS Approach

In this section, we will first describe the problem in a stylized way. The goal is to evaluate the

current quarter nowcast of GDP based on the flow of information that becomes available during

the quarter. Then we will review the frequentist framework proposed by Giannone et al. (2008) in

order to build a foundation for our BAY approach.

2.1.1 Working With Unbalanced Data

In real time at a particular release date, some series have observations through the current

month, whereas for others the most recent observations are from the previous month. Consequently,

the underlying datasets are unbalanced. Appropriately dealing with this unbalanced feature of the

data is key for nowcasting.

Let t be the index for month and k be the index for quarter. Let xt = (x1,t, ...., xn,t)
′ be a n× 1

vector denoting n monthly data series at month t, and yk be quarterly GDP at quarter k. Assume

xt are released at Q different dates of month t. Each releasing date is denoted as (q, t), representing
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the qth release date in month t, where q = 1, ...Q. The releasing set v∗q,t contains indexes of n∗q

monthly series that are released at the release date (q, t), where n∗q = ||v∗q,t|| denoting the number

of newly released monthly series. Let vq,t denote the set collecting indexes of all xi,t’s that have

been released at or before the release date (q, t), that is vq,t =
⋃
i≤q v

∗
i,t, and nq =

∑
i≤q n

∗
i is the

number of available series at (q, t). Thus xi∈vq,t represents monthly series that are available at the

release date (q, t). Without loss of generality, we assume the release dates for all series are fixed

across months.

Table 2.1 illustrates how the data is released in a given quarter using a toy example. Consider

there are n = 6 monthly series, xt = (x1,t, x2,t, x3,t, x4,t, x5,t, x6,t)
′, released at three different

dates (i.e. Q = 3). Without loss of generality, xit can always be arranged such that index i

follows the order of releasing dates. Suppose {x1,t, x2,t, x3,t}, with the dark gray background,

are released at the first releasing date (1, t), so the releasing set v∗1,t = {1, 2, 3}. Since this is

the very first releasing date so the available set v1,t is also {1, 2, 3} and the available monthly

series xi∈v1,t is {x1,t, x2,t, x3,t}. Then at the second releasing date (2, t), {x4,t, x5,t}, with the

gray background, are released, hence the releasing set v∗2,t = {4, 5}. The available set v2,t is

{1, 2, 3, 4, 5} so xi∈v2,t = {x1,t, x2,t, x3,t, x4,t, x5,t}. At the last releasing date (3, t), the last series

x6,t, with the light gray background, becomes available, so v∗3,t = {6}, v3,t = {1, 2, 3, 4, 5, 6}, and

xi∈v3,t = {x1,t, x2,t, x3,t, x4,t, x5,t, x6,t}.

Table 2.1: Data Releasing Format in Current Quarter. Dark gray cells mean xi∈v∗1,t , gray cells

mean xi∈v∗2,t , light gray cell means xi∈v∗3,t , white cells mean unreleased data series at (q, t).

(q, t) (1, t) (2, t) (3, t)

xi∈vq,t

x1,t x1,t x1,t
x2,t x2,t x2,t
x3,t x3,t x3,t
NA x4,t x4,t
NA x5,t x5,t
NA NA x6,t



www.manaraa.com

8

Table 2.2 gives an overall picture of the entire dataset available when doing nowcasting. Partic-

ularly, we consider the first release date of the second month in the current quarter as an example.

Suppose we want to nowcast GDP in the current quarter yK+1 using all monthly information up

through month T (the end of the sample), where T = 3K + 1 (means the first month nowcast),

or T = 3K + 2 (means the second month nowcast), or T = 3K + 3 (means the third month now-

cast). The observations available to use at the release date (q, t), highlighted in gray color in Table

2.2, include {y1, y2, ..., yK} and {x1,x2, ...,xT−1,xi∈vq,T }. The goal is to nowcast yK+1 using all

information available at every release date (q, t) in the current quarter, i.e. real time nowcasting.

Note that the factors {F1, ...,FT } are not observed, and need to be estimated using the adjusted

Kalman Filter (e.g. the GRS approach), or using the Bayesian smoothing techniques (e.g. our BAY

approach). At every new release date (q, t) (q = 1, ..., Q), model parameters and {F1, ...,FT } are

updated with this additional information from the new release, and nowcast of yK+1 is re-produced.

Therefore there are 3Q nowcast results in the current quarter.

Table 2.2: Overall picture of the entire dataset available at the first release date of the second

month in the current quarter. Cells highlighted in gray color indicates the corresponding variables

in the cells are available.

k 1 2 · · · K K+1

t 1 2 3 4 5 6 · · · T − 4 T − 3 T − 2 T − 1 T T + 1

xi,t

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 · · · x1,T−4 x1,T−3 x1,T−2 x1,T−1 x1,T NA

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 · · · x2,T−4 x2,T−3 x2,T−2 x2,T−1 x2,T NA

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 · · · x3,T−4 x3,T−3 x3,T−2 x3,T−1 x3,T NA

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 · · · x4,T−4 x4,T−3 x4,T−2 x4,T−1 NA NA

x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 · · · x5,T−4 x5,T−3 x5,T−2 x5,T−1 NA NA

x6,1 x6,2 x6,3 x6,4 x6,5 x6,6 · · · x6,T−4 x6,T−3 x6,T−2 x6,T−1 NA NA

yk y1 y2 · · · yK yK+1

Ft F1 F2 F3 F4 F5 F6 · · · FT−4 FT−3 FT−2 FT−1 FT

How to handle the unbalanced feature of the monthly data series will be discussed in Section

2.1.2 for the GRS approach, and in Section 2.2.2 for our BAY approach.
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2.1.2 The GRS Approach

Since there are numerous series in the information set, modeling y directly on all x would involve

too many parameters, and hence the model performs poorly in nowcasting/forecasting because of

the large uncertainty in parameters’ estimation (“the curse of dimensionality”). The fundamental

idea of Giannone et al. (2008) is to explore the collinearity of the series by summarizing all

available information into a few common factors. Because of collinearity, a linear combination

of the common factors is able to approximate the dynamic interactions among the series and to

postulate a parsimonious model that works well in nowcasting/forecasting. The GRS approach

formulates the model in the following ways.

First, they assume the monthly data series is a linear function of a few unobserved common

factors Ft,

xt = µ+ ΘFt + εt, (2.1)

where xt = (x1,t, ...., xn,t)
′ be a n × 1 monthly data series at month t, for t = 1, ..., T , Ft =

{f1t, · · · , frt}′ be a r×1 monthly common factors at month t, Θ is the n× r factor loading matrix,

µ is the mean vector, and εt ∼ N(0,Ωn×n). The number of latent factors, r, is assumed to be

known and r << n. Then they further specify the dynamics of the common factors as follows,

Ft = AFt−1 + ut, (2.2)

where A is a r×r matrix and all roots of det(Ir−Az) lie outside the unit circle, and ut ∼ N(0,Σr×r).

Finally, the quarterly GDP is assumed to be a linear function of the common factors in the third

month of the quarter,

yk = β0 + β′1F3k + νk, (2.3)

where β0 is a scalar, β1 is a r × 1 vector, vk ∼ N(0, η2), and k = 1, ...,K. We assume 3K + 1 ≤

T ≤ 3K + 3. The dynamic factor model specified this way not only can bridge the information

contained in monthly data series with the quarterly GDP, but also helps reduce the dimension of

parameters, thus increasing the degrees of freedom.



www.manaraa.com

10

If the complete set of monthly data series is observed, the unobserved common factors Ft

(t = 1, ..., T ) could be consistently estimated by PCA as recently shown by several authors in

literature. However, when doing real time nowcasting, the dataset is unbalanced and we want to

exploit the additional information from a newly released set, which requires dealing with missing

data at the end of the sample. To overcome this difficulty, the GRS estimates parameters and

common factors Ft (t = 1, ..., T ) based on the following three stages. The first stage uses an OLS

regression on principal components (PCs) extracted from a balanced panel that has truncated at

the previous month T − 1, i.e. the balanced panel is {x1, ...,xT−1} in Table 2.2. And the second

stage adjusts the Kalman smoother based on the estimated parameters from the first stage in order

to deal with the unbalanceness of data. More specifically, at the release date (q, T ), the variance

covariance matrix used in the Kalman filter is defined as Ω̃vq,T = diag(w̃2
11, ..., w̃

2
nn), where

w̃2
ii =


w2
ii if i ∈ vq,T

∞ if i /∈ vq,T
, for i = 1, ..., n, (2.4)

w2
ii is the ith diagonal element of covariance matrix for εt, estimated from the balanced panel data

in the first stage. And then the Kalman Filter algorithm is applied on the entire (unbalanced)

data, i.e. {x1,x2, ...,xT−1,xi∈vq,T }, using Ω̃vq,T . In this way, Giannone et al. (2008) argues that

the filter, through its implicit signal extraction process, will put no weight on missing observations

in the computation of the factors. Then the third stage estimates the coefficients in equation (2.3)

by OLS regression of GDP on the latent factors estimated by the Kalman filtering. Readers can

refer to Giannone et al. (2008) for more details.

2.2 Alternative Approach to Nowcasting: Bayesian Markov Chain Monte

Carlo Method

In this section, we discuss some restrictions imposed on the model to avoid the non-identifiable

issue of common factors Ft, introduce our BAY approach to estimate model parameters and latent

factors Ft, and provide formulas for nowcasting using both GRS and BAY approaches.
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2.2.1 Model Modifications

It is known that dynamic factor models suffer from a non-identifiable issue. Following Stock and

Watson (2002), two sets of assumptions, Assumption F and Assumption M are constructed (details

are in Appendix A.1). Specifically in this chapter, some restrictions are imposed on matrices A

and Σ in the dynamics of latent factors in equation (2.2) as follows, A = diag(a1, a2, ..., ar) and

Σ = diag(σ21, σ
2
2, ..., σ

2
r ), where |aj | < 1 (j = 1, ..., r) and σ2i /(1− a2i ) > σ2j /(1− a2j ), ∀i < j. These

restrictions together with the prior specification for loading matrix Θ (discussed later) satisfy the

identification assumption F1 in Appendix A.1. Stock and Watson (2002) also shows that this

assumption identifies the factors up to a change of sign.

For comparison with the random walk approach, we also consider allowing the quarterly GDP

yk to depend on lags of latent factors and GDP itself. The model considered in our article can be

summarized by the following:

xt = µ+ ΘFt + εt, for t = 1, ..., T

Ft = AFt−1 + ut, for t = 1, ..., T (2.5)

yk = β0 + β′1F3k + β′2F3k−1 + β′3F3k−2 + β4yk−1 + νk, for k = 1, ...,K

where εt ∼ N(0,Ωn×n), ut ∼ N(0,Σr×r), vk ∼ N(0, η2), and matrices A and Σ have the re-

strictions discussed in the beginning of this subsection, which implies fj,t = ajfj,t−1 + σjuj,t for

j = 1, ..., r and uj,t ∼ N(0, 1).

At the release date (q, T ), we have observations Y = {y1, y2, ..., yK} and X(q,T ) = {x1,x2, ...xT−1,

xi∈vq,T }; latent variables F = {F1,F2, ...,FT }; and model parameters Ψ = {µ,Θ,Ω,A,Σ, β0,β1,β2,

β3, β4, η
2}. The goals are to estimate Ψ and F using the observables and to nowcast the current

quarter GDP yK+1 at every release date (q, T ) for q = 1, ..., Q. The original GRS approach is

adjusted to accommodate such model modifications.
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2.2.2 Estimating Dynamic Factor Models via a Bayesian MCMC approach

We face a couple of challenges in estimating the above model. First, it is computationally

infeasible to integrate out the high-dimensional latent variable F to obtain the likelihood based

only on observables. Second, the observations in the panel of X(q,T ) = {x1,x2, ...xT−1,xi∈vq,T }

are not balanced. To overcome these difficulties, we develop a computational Bayesian Markov

Chain Monte Carl (MCMC) approach for estimating the above dynamic factor model in real time.

MCMC conducts inferences by simulating efficiently from (potentially complicated) posterior dis-

tributions of model parameters and latent variables given the observables. MCMC samples from

the typically high-dimensional and complex posterior distributions by generating a Markov Chain

over parameters and latent variables whose equilibrium distribution is the desired posterior distri-

bution. The Monte Carlo method uses these samples for numerical integration for parameter and

state estimation.

In order to facilitate the derivation of the joint posterior distribution, the dynamic of xt in

equation (2.5) is rewritten as

xt = µ+ [In×n ⊗ F′t] ∗ θ + εt,

where θ = vec(Θ) = (θ1, ...,θn)′ if Θ = (θ′1, ...,θ
′
n)′ such that θi, (i = 1, ..., n) is a 1 × r vector

representing the ith row of Θ. Thus the conditional density of xt in equation (2.5) is

xt|Ft,Θ,Ω ∼ N(µ+ [In×n ⊗ F′t] ∗ θ,Ω), for t = 1, ..., T − 1, (2.6)

the conditional density of Ft in equation (2.5) is

Ft|Ft−1,A,Σ ∼ N(AFt−1,Σ), for t = 2, ..., T, (2.7)

and the conditional density of yk in equation (2.5) is

yk|β,F3k,F3k−1,F3k−2, yk−1, η
2 ∼ N(β0 + β′1F3k + β′2F3k−1 + β′3F3k−2 + β4yk−1, η

2), (2.8)
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for k = 1, ...,K. The joint posterior distribution, p(Ψ,F|Y,X(q,T )), can be decomposed into

products of individual conditionals,

p(Ψ,F|Y,X(q,T )) ∝ p(Y,X(q,T ),Ψ,F)

∝
T−1∏
t=1

p(xt|Ft,θ,Ω)p(xi∈vq,T |FT ,θ,Ω)×
T∏
t=2

p(Ft|Ft−1,A,Σ)

×
K∏
k=2

p(yk|β,F3k,F3k−1,F3k−2, yk−1, η
2)× π(Ψ), (2.9)

where p(xt|Ft,θ,Ω), p(Ft|Ft−1,A,Σ), and p(yk|β,F3k,F3k−1,F3k−2, yk−1, η
2) are given accord-

ing to the distributions in equations (2.6), (2.7) and (2.8) respectively. Here π(Ψ) is the prior

distribution for Ψ, which will be specified later.

To deal with the missing data in xi∈vq,T at the end of the sample, we define an indicator matrix

1vq,T as a nq × n matrix obtained by deleting the ith row from the identity matrix In×n if the

corresponding xi,T is missing at time (q, T ), where i could be any index from i = 1, ..., n. For the

toy example discussed in Section 2.1.1, we have

1v1,T =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 , 1v2,T =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


, 1v3,T = I6×6.

Then we can write xi∈vq,T as xi∈vq,T = 1vq,TxT , thus the conditional density of xi∈vq,T in equation

(2.9) is

xi∈vq,T = 1vq,TxT |FT ,Θ,Ω ∼ N(1vq,T (µ+ [In×n ⊗ F′T ] ∗ θ),1vq,TΩ1′vq,T ). (2.10)

Note this remedy for the unbalanced data issue is different from GRS which restricts matrix Ω̃ to

be diagonal with ∞ variances for the missing series in order to implement the Kalman Filtering

algorithm. We complete the model specification by assigning prior distributions for the parameter

set Ψ in Bayesian framework.
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We set the prior for Θ as,

Θn×r ∼Matrix Normal(0n×r, In×n, Ir×r). (2.11)

In this way, the identification assumption F1 in Appendix A.1 is satisfied by the law of large number.

The prior for Ω is

Ωn×n ∼ Inverse Wishart
( 1

n
In×n, νθ

)
, (2.12)

where νθ is a pre-specified scaler. This prior allows εt to be correlated across series, satisfying

assumption M1 in Appendix A.1.

The prior for A is standard normal truncated at [−1, 1], for j = 1, ..., r, that is

π(aj) =



0 if aj ≤ −1

φ(aj)

Φ(1)− Φ(−1)
if − 1 < aj < 1

0 if aj ≥ 1

, (2.13)

where φ(·) and Φ(·) are PDF and CDF for standard normal distribution respectively. And π(A) =∏r
j=1 π(aj).

The prior for Σ is, for j = 1, ..., r,

σ2j
iid∼ Inverse Gamma(αs, βs), (2.14)

where αs, βs are prespecified scalers. And π(Σ) =
∏r
j=1 π(σj).

The prior for β = (β0,β
′
1,β

′
2,β

′
3, β4)

′ is

β(3r+2)×1 ∼ N(0(3r+2)×1, I(3r+2)×(3r+2)). (2.15)

The prior for η2 is

η2 ∼ Inverse Gamma(αh, βh), (2.16)

where αh, βh are pre-specified scalers.

We assume all priors are independent. Following standard MCMC procedure, we derive the com-

plete conditional distributions for each parameter and latent variable, and obtain posterior samples
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by simulating from these individual complete conditionals iteratively. More specifically, we obtain

the posterior distribution p(Ψi|Ψ−i,Y,X(q,T ),F) where Ψi is the ith element of Ψ and Ψ−i contains

all the parameters except for Ψi, and the posterior distribution for factors p(Ft|Ψ,Y,X(q,T )) for

all t. In estimation, we draw posterior samples from the above complete conditional distributions

and use the means of the posterior samples as parameter estimates and the standard deviations of

the posterior samples as standard errors of the parameter estimates. Appendix A.2 provides the

posterior distributions for all model parameters and latent factors.

The GRS approach estimates parameters and latent factors in multi-stages, i.e. first using

PCA to obtain parameter estimates, then using KF to obtain latent factor estimates and lastly

using OLS to estimate coefficients β’s in the dynamics of quarterly GDP. However, we integrate

estimation of all parameters and factors into a single framework so that uncertainty of parameters

and latent variables can be taken into account simultaneously and inferences are readily made based

on posterior draws after the burn-in period. Also note that in the GRS approach, only information

from X enters into estimation of F in its PCA and Kalman Filter stages, while our BAY approach

uses both information from monthly series X and quarterly GDP Y to update F (see details in

Appendix A.2).

2.2.3 Nowcasting GDP yK+1

Recall that we have complete xt for t = 1, ..., T − 1, and associated yk for k = 1, ...,K are also

available. Suppose we are at (q, T ) in month T (q = 1, ..., Q), the task is to nowcast yK+1 based on

{x1, ....,xT−1,xi∈vq,T } and {y1, ..., yK}. Here T can be the first (T = 3K+1), second (T = 3K+2)

or even third (T = 3K+ 3) month of quarter K+ 1. Let β̂0, β̂i (i = 1, 2, 3), β̂4 and F̂t (t = 1, ..., T )

are estimated parameters and latent common factors from the GRS approach, and let β
(g)
0 , β

(g)
i

(i = 1, 2, 3), β
(g)
4 and F

(g)
t (t = 1, ..., T ) be the gth posterior draws of parameters and latent factors

after the burn-in period in the BAY approach, where g = 1, ..., G. The nowcast can be calculated

as follows.
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• In the first month, i.e. when T = 3K + 1, the nowcast of K + 1 quarterly GDP using BAY

and GRS are given by:

ŷBAYK+1 =
1

G

G∑
g=1

[
β
(g)
0 + (β

(g)
1 )′(A(g))2F

(g)
T + (β

(g)
2 )′A(g)F

(g)
T + (β

(g)
3 )′F

(g)
T + β

(g)
4 yK

]
, (2.17a)

ŷGRSK+1 = β̂0 + β̂
′
1Â

2F̂T + β̂
′
2ÂF̂T + β̂

′
3F̂T + β̂4yK . (2.17b)

• In the second month, i.e. when T = 3K + 2, the nowcast of K + 1 quarterly GDP using BAY

and GRS are given by:

ŷBAYK+1 =
1

G

G∑
g=1

[
β
(g)
0 + (β

(g)
1 )′A(g)F

(g)
T + (β

(g)
2 )′F

(g)
T + (β

(g)
3 )′F

(g)
T−1 + β

(g)
4 yK

]
, (2.18a)

ŷGRSK+1 = β̂0 + β̂
′
1ÂF̂T + β̂

′
2F̂T + β̂

′
3F̂T−1 + β̂4yK . (2.18b)

• In the third month, i.e. when T = 3K + 3, the nowcast of K + 1 quarterly GDP using BAY

and GRS are given by:

ŷBAYK+1 =
1

G

G∑
g=1

[
β
(g)
0 + (β

(g)
1 )′F

(g)
T + (β

(g)
2 )′F

(g)
T−1 + (β

(g)
3 )′F

(g)
T−2 + β

(g)
4 yK

]
, (2.19a)

ŷGRSK+1 = β̂0 + β̂
′
1F̂T + β̂

′
2F̂T−1 + β̂

′
3F̂T−2 + β̂4yK . (2.19b)

Note that all of these F̂t’s for the GRS, or β
(g)
i ’s and F

(g)
t for the BAY, are updated in every release

date within a month. And then ŷGRSK+1 and ŷBAYK+1 are re-produced for each additional release date.

The superscript (q, T ) in both ŷGRSK+1 and ŷBAYK+1 has been suppressed to simplify notations.

2.3 Bayesian Approach in Nowcasting: Simulation Evidence

In this section, through numerical simulations, we investigate two questions on Bayesian analysis

of dynamic factor models. The first question is whether it can identify the latent factors Ft

accurately. The second question is whether it can produce reliable nowcasting results. Specifically,

we compare in-sample estimation of Ft and out-of-sample nowcasting performance of the BAY and

the GRS approaches, when addressing these two questions.
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In each of 2 simulation studies below, we generate data according to the model in (2.5) where

T = 210 (months), K = 70 (quarters), and n = 60 (monthly data series) with Q = 3 releases in

each month. We set the first, second and third release sets as v∗1,t = {1, ..., 20}, v∗2,t = {21, ..., 40},

and v∗3,t = {41, ..., 60}, i.e. n∗1 = n∗2 = n∗3 = 20.

Simulation 1 In this simulation, we assume there is no correlation among blocks of three re-

leases. The following parameters are used to generate the data: A = diag(0.7,−0.65, 0.6); Σ =

diag(5, 3.5, 2); β0 = 0.5, β1 = β2 = β3 = (4, 1, 0.5)′, and β4 = 0.65; η2 = 2; Ω = diag(Ω11,Ω22,Ω33)

where Ωqq (q = 1, 2, 3) is n∗q×n∗q covariance matrix for the qth release dataset that is generated from

an Inverse-Wishart distribution IW (n∗q , In∗q×n∗q/60); and θ = (θ1, ...,θ60)
′, where θi = (θi1,θi2,θi3)

is the ith row of Θ, where θir is the coefficient for fj,t. For i = 1, ..., 20, θi1 is simulated from

N(0, 1), while θi2,θi3 are simulated from N(0, 0.0025). For i = 21, ..., 40, θi1,θi2 are simulated

from N(0, 1), while θi3 is simulated from N(0, 0.0025). For i = 41, ..., 60, θi1, θi2,θi3 are simulated

from N(0, 1). This set-up assumes the first release mainly contains information from the first latent

factor, the second release mainly contains information from the first two latent factors, and the last

release contains information from all three latent factors.

Simulation 2 In this simulation, we allow no-zero correlation among blocks of three releases, that

is, Ω is simulated from IW (60, I60×60/60). Other parameters have the same set-up with Simulation

1.

Figure 2.1 plots the simulated GDP yk and three common factors Ft from Simulation 1 and

Simulation 2. The first 38 quarters and the corresponding 114 monthly data series are used as

in-sample data, and the out-of-sample nowcasting performance is assessed based on the rest of 32

quarters and 96 monthly data series.

2.3.1 In-sample Estimation of Latent Factors Ft

We first focus on simulation evidence that the BAY method can accurately estimate the latent

factors Ft. Obtaining good estimates of latent factors is an important task if one is interested in

using the same set of common factors to explain the movements of different economic or financial
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Figure 2.1: Simulated GDP and latent factors. The top row is the GDP, and the bottom three rows

are simulated first, second, and third latent factors respectively. The left panel is for Simulation 1

and the right panel is for Simulation 2.
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time series. For the BAY MCMC, we use the results from PCA and Kaman Filter in the GRS

approach as the initial values of parameters and latent factors. The hyper-parameter values are set

to be: νθ = n+ 2 for the prior of Ω in (2.12), (αs, βs) = (2, r + 2) for the prior of Σ in (2.14), and

(αh, βh) = (2, 0.0001) for the prior of η2 in (2.16).

We run our MCMC procedure for 7,000 iterations, discarding the first 5,000 and using the last

2,000 iterations for posterior summaries. Investigation (not reported here) is conducted to check

how fast posterior draws of parameters and latent factors converge. It is found that the burn-in

period with 5,000 iterations is enough. See more details in the supplemental file B.

Figure 2.2 plots the estimated latent factors from both BAY and GRS approaches, together

with the true latent factors, for two simulations in the in-sample period t = 1, ..., 114. Absolute

values are used in the pictures because the restrictions based on Stock and Watson (2002) can

identify the factors up to a change of sign. Figure 2.2 shows that the estimated latent factors from

both BAY and GRS approaches are close to the true factors, which confirms that by introducing

Assumption F and Assumption M, the latent factors are identifiable for both approaches.

In addition to graphical illustrations, we also compare the in-sample fit errors of GDP and in-

sample estimation error of latent factors between the two approaches. The relative in-sample

fit error for GDP is calculated as RISFE =
∑38

k=1 |ŷ
fit
k − yk|/

∑38
k=1 |yk|, where ŷfitk = β̂0 +

β̂
′
1F̂3k + β̂

′
2F̂3k−1 + β̂

′
3F̂3k−2 + β̂4yk−1, and β̂’s and F̂t’s are estimated using the in-sample data

either from GRS or BAY method. For BAY, posterior means are used as estimated parameters

and latent factors. The relative in-sample estimation error for Ft is calculated as RISEE(j) =∑114
t=1 ||f̂jt| − |fjt||/

∑114
t=1 |fjt|, where f̂jt (j = 1, 2, 3) is the estimated jth factor at time t from

either GRS and BAY method. Table 2.3 reports both RISFE and RISEE(j) (j = 1, 2, 3) for

both methods and both simulation studies. Table 2.3 again shows that the averages of in-sample

estimation errors of latent factors for both BAY and GRS method are small in all three factors.

For Simulation 1, the BAY approach produces better RISEE for the second and third latent factors

and close RISEE for the first latent factor. For Simulation 2, the BAY approach only outperforms

GRS in terms of RISEE for the third latent factor and close RISEE for the first two latent factors.
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Figure 2.2: Absolute values of estimated latent factors from BAY (green dashed line) and GRS (red

dotted line) approaches versus the truth (black solid line), with the left panel being Simulation 1

and the right panel being Simulation 2.
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Table 2.3: Relative in-sample fit errors of GDP RISFE, and relative in-sample estimation error

RISEE(j) (j = 1, 2, 3) in 3 factors, for both simulations.

Simulation
RISFE RISEE(1) RISEE(2) RISEE(3)

GRS BAY GRS BAY GRS BAY GRS BAY

1 0.448 0.446 1.098 1.124 0.382 0.360 0.309 0.277

2 0.336 0.325 0.923 0.934 0.684 0.707 0.804 0.767

The in-sample fit results in this subsection show that our MCMC method provides accurate

identification of latent factors, which can help shed light on comovements of latent factors and some

of the economic/financial series.

2.3.2 Out-of-sample Nowcasting Performance

Out-of-sample nowcasting performance of GRS and BAY methods is assessed based on 32

one-step-ahead nowcasting. For both methods, in each additionally added quarter, the model

parameters and latent factors are updated for each release date within each of the 3 nowcasting

months in the current quarter. Then the nowcast results are produced according to (2.17) - (2.19),

and there are totally 32× 3× 3 = 288 nowcast results.

Figure 2.3 and 2.4 show the nowcasting performance for Simulation 1 and 2. The left panel

plots BAY nowcasts and the right panel plots GRS nowcasts. The first, second, and third row

are nowcasts in the first, second, and third month of the given quarter respectively. In each cell,

the curves colored in red, green and blue with different knot types represent the nowcast results

based on the first, second, and third release dates in a given month of a given quarter respectively.

Comparing GRS to BAY approaches, both methods give excellent nowcasts from the very first

release in the first month all the way to the last release in the third month of a quarter. There

are no distinguishable changes from releases to releases in the same month for both GRS and BAY

approaches. But some improvement can be spotted when moving from nowcasts in the first month

to nowcasts in the third month.
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Figure 2.3: Nowcasting performance for Simulation 1, the left panel plots BAY nowcasts and the

right panel plots GRS nowcasts. The first, second, and third row are nowcasts in the first, second,

and third month of the given quarter respectively. In each cell, the curves colored in red, green and

blue with different knot types represent the nowcast results based on the first, second, and third

release dates in a given month of a given quarter respectively.

We use the mean absolute nowcasting error (MANE) as a measure of nowcasting accuracy.

For either GRS or BAY, let ŷ
(q,T )
K+1 be the nowcast calculated according to (2.17) - (2.19) at qth

release date of month T , where q = 1, 2, 3 and T = 3K + 1 (first month nowcast), or T = 3K + 2

(second month nowcast), or T = 3K+ 3 (third month nowcast) of the current quarter K+ 1. Then

MANE(q, T ) = 32−1
∑70

K+1=39 |ŷ
(q,T )
K+1 − yK+1|. In order to compare the nowcasting performance

of the two methods with the random walk (RW) approach, which takes GDP from the previous

quarter as the nowcast for the current quarter GDP, relative MANE’s (relative to the MANE of

RW) are used. Figure 2.5 and 2.6 show the ratios (in percentages) of MANE’s of GRS or BAY

to the MANE of RW in nine combinations of 3 releases and 3 nowcasting months for Simulation

1 and 2. The left panel is for BAY, the right panel is for GRS, and the horizontal line is 100%

representing the baseline for RW, with first, second, and third release colored from dark to light.

Bars shorter than the reference line indicates that nowcasts are better than RW, otherwise worse
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Figure 2.4: Nowcasting performance for Simulation 2, the left panel plots BAY nowcasts and the

right panel plots GRS nowcasts. The first, second, and third row are nowcasts in the first, second,

and third month of the given quarter respectively. In each cell, the curves colored in red, green and

blue with different knot types represent the nowcast results based on the first, second, and third

release dates in a given month of a given quarter respectively.

than RW. Figure 2.5 and 2.6 tell the same story as Figure 2.3 and 2.4, moving from the first month

to the third month, there are significant reductions in terms of MANE’s for both GRS and BAY

approaches. Comparing the nowcasting errors between releases in the same month, GRS nowcasting

slightly improves, but there is no significant change in MANE for BAY. Both methods beat RW in

terms of nowcasting errors.

Table 2.4 reports the percentages of reduction in MANE’s of both methods relative to RW, i.e.

(MANEm −MANERW )/MANERW × 100 (in %), where m ∈ {BAY,GRS}, for Simulation 1

and 2. The more negative the percentage is, the more reduction in nowcasting errors it represents.

When comparing the averages of percentages over 3 releases for each month, we see BAY in general

has more reduction in terms of nowcasting errors than GRS. Even though there is no noticeable

change across releases in BAY, the percentages of reduction in MANE of BAY in the first release
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Figure 2.5: Mean absolute nowcasting error ratios for Simulation 1. The left panel is for BAY, the

right panel is for GRS, and the horizontal line is 100% representing the baseline for RW. The first,

second, and third release are colored from dark to light.

is higher than those of GRS in the third release for the same month in most of the places, except

for the second and third months in Simulation 2.

We conduct some investigation to understand why there is not much change across different

releases in BAY method. First, in the results reported in the supplemental file B, we find that there

are no significant changes in estimated parameters and factors across different releases, based on

some tests and graphical displays. It is actually not surprising given that little extra information

becomes available at a new release date. For example, when nowcasting y39 based on the very

first release in the first month, the number of data points in hand is 60 × 114 + 20 = 6860, and

when the second set of release is available, the number of data points becomes 6860 + 20 = 6880,

which has only roughly 0.29% new information added. However, the estimated factors in GRS

have relatively much bigger changes across different releases. Because the BAY method results

in estimated factors that are already very accurate (even at the first release) as shown in Section
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Figure 2.6: Mean absolute nowcasting error ratios for Simulation 2 (b). The left panel is for BAY,

the right panel is for GRS, and the horizontal line is 100% representing the baseline for RW. The

first, second, and third release are colored from dark to light.

2.3.1, it is much more difficult for BAY-estimated factors to improve further, compared to the GRS-

estimated factors. Second, theoretically, adding more series on the left hand side of dynamics of xt

in (2.1) won’t change the asymptotic consistency property of the estimator for Ft, but will help gain

efficiency. In order to see such efficiency gain effect, we calculate the posterior standard deviations

of nowcasts for different releases. Define the standard deviation of nowcast for quarterly GDP at

release q in month T for quarter K + 1, where q = 1, 2, 3, T = 1, 2, 3, and K + 1 = 39, ..., 70, as

SD
(q,T )
K+1 =

√
(G− 1)−1

∑G
g=1

[
(ŷ

(q,T )
K+1 )(g) − ȳ(q,T )K+1

]2
where ȳ

(q,T )
K+1 = 1

G

∑G
g=1(ŷ

(q,T )
K+1 )(g). Furthermore,

define the aggregated level standard deviation for release q in month T of quarter K + 1, as

SD(q,T ) = 32−1
∑70

K+1=39 SD
(q,T )
K+1 . Figure 2.7 plots the side-by-side aggregated standard deviation

for BAY nowcasts for Simulation 1 and 2. The left panel is for Simulation 1, the right panel is for

Simulation2, with first, second, and third release colored from dark to light. A downward stepwise
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Table 2.4: This table reports the percentages of reduction in MANE’s of both methods relative to

RW, i.e. (MANEm −MANERW )/MANERW × 100 (in %), where m ∈ {BAY,GRS}, for both

simulation studies.

(a) Percentage of reductions in MANE’s relative to RW in Simulation 1

Release BAY BAY BAY GRS GRS GRS

1st Month 2nd Month 3rd Month 1st Month 2nd Month 3rd Month

1st -35.473% -72.928% -93.946% -31.294% -67.197% -88.106%

2nd -35.519% -73.089% -93.860% -33.847% -71.211% -92.905%

3rd -35.355% -72.855% -93.850% -34.753% -72.865% -93.946%

Average -35.782% -72.857% -93.885% -33.298% -70.424% -91.652%

(b) Percentage of reductions in MANE’s relative to RW in Simulation 2

Release BAY BAY BAY GRS GRS GRS

1st Month 2nd Month 3rd Month 1st Month 2nd Month 3rd Month

1st -51.869% -71.435% -93.742% -36.531% -59.402% -85.088%

2nd -51.997% -72.006% -93.699% -48.905% -71.240% -94.285%

3rd -52.264% -72.034% -94.590% -50.923% -72.620% -95.400%

Average -52.043% -71.825% -94.010% -45.453% -67.754% -91.591%

trend can be detected. Therefore, for BAY approach, although additional releases does not improve

nowcastings in terms of MANE, more monthly data series do help the precision of BAY nowcastings.

In the simulation studies considered in this article, we evaluate our BAY method based on its

estimation accuracy in latent factors and nowcasting performance for the quarterly GDP. In terms

of estimation accuracy in factors, both of the BAY and GRS approaches can produce accurate

estimated factors. In terms of nowcasting performance, the two methods are comparable with

BAY being slightly better in sense of resulting in smaller nowcasting errors. Our simulation results

suggest that the BAY method has the potential to estimate the dynamic factor models well and

produce reliable nowcasting results.

2.4 Bayesian Approach in Nowcasting: Empirical Evidence

Despite its advantages demonstrated in the numerical simulations, it is not immediately clear

that the BAY method can outperform the RW or the GRS approach in empirical application. In
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Figure 2.7: Aggregated standard deviations for Simulation 1 and 2. The left panel is for Simulation

1, the right panel is for Simulation2, with first, second, and third release colored from dark to light.

this section, we examine empirical performance of the BAY method, compared with the RW and

the GRS, in nowcasting the quarterly China’s GDP.

We follow Yiu and Chow (2011), which applies GRS method to nowcast annual growth rate

of China’s GDP, to select relevant monthly data series. The dataset in Yiu and Chow (2011)

contains 189 indicator series of several categories, such as prices, industrial production, fixed asset

investment, external sector, money market and financial market. The span of the panel is from

January 1998 to June 2009. Most series are transformed to either a 12-month growth rate or a

12-month difference to induce stationarity, detailed transformation information can be found in the

original paper. They divide the monthly series into 16 data blocks, which are released on eight

dates throughout months. We extend the time span of the data a little longer until June of 2010.

Therefore, there are totally 150 months and 50 quarters in the dataset considered in our empirical

study. The GDP used in this chapter is China’s quarterly nominal GDP growth rate (relative to

nominal GDP in the same period of the previous year). For example, the GDP in the third quarter
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of 2008 is defined as, (Nominal GDP of 2008Q3

Nominal GDP of 2007Q3

)
× 100%.

Figure 2.8 plots the GDP data covering the period from 1998Q1 to 2010Q2.

China's GDP

Year

8
10

12
14

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 2.8: China’s quarterly nominal GDP growth rate for 1999Q1 to 2010Q2. Quarters to the

left of the dashed line are reserved as in-sample data, quarters to the right of the dashed line are

out-sample nowcasting targets.

Due to missingness, we managed to obtain 159 out of the 189 monthly data series that have no

missing information for all months in the time period considered. The monthly data are transformed

using the same transformation in Yiu and Chow (2011). Moreover, it is not necessarily true that

all the chosen monthly series are related to the GDP. Hence, some preliminary regression analyses

are done to further remove irrelevant monthly series. Specifically, for each xi,t of the 159 collected

series, we run a OLS regression, regressing yk on xi,3k and its two lags xi,3k−1 and xi,3k−2 for

k = 1, ..., 50. The monthly data series xi,t is kept if at least one of the three coefficients in the

OLS regression is statistically significant. In the end, 117 monthly data series are kept. Table 2.5

provides the summary information of data series used. Specific names of the series can be found in

the supplemental file B.
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Table 2.5: Data Used For Nowcasting. Each column, from left to right, represents No. of release,

name of data block, release date, No. of series released in each block, and total number of series

for the corresponding release. RL stands for release.

Release Block Release Date No. of Series Total No. of Series

RL1

Interest Rate

1st
9

28Stock Market 6

Foreign Financial 13

RL2

Price Index

12th

6

13
External 1 2

Building 4

Goverment 1

RL3 Investment 17th 4 4

RL4
Exchange Rate

19th
9

18
Producer Price Index 9

RL5 World Commodity Price 21st 10 10

RL6
External 2

24th
21

22
Retail Sales 1

RL7
Economic Climate Indicator

25th
2

16
Industrial Production 14

RL8 Monetary 28th 6 6

Total 16 Blocks 8 Dates 117 Series

We reserve the first 34 quarters (1998Q1 to 2006Q2) as the in-sample data, and use the rest

of 16 quarters (2006Q3 to 2010Q2) to assess one-step-ahead nowcasting performance. The vertical

dashed line in Figure 2.8 represents this cut-off time. For each additional release in each additional

month added, parameters and latent factors are updated and nowcast for the current quarter is

re-calculated. Therefore, there are totally 16×3×8 = 384 nowcast results reported. Yiu and Chow

(2011) adopts the method in Bai and Ng (2002) to determine the number of common factors in

the factor model, and the number of factors they chose is 2. A PCA is performed based on the

117 monthly data series after elimination. We see that the first three PCs contribute 83.44% of the

total variation, while the fourth PC only adds additional 8% of the variation explained. Therefore,

we chose the number of factors to be 3 instead of 2. We use the same hyper-parameter values for

the priors, and the same way of choosing initials for parameters and factors, as discussed in Section
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2.3.1. Again, we discard the first 5,000 runs as “burn-in” period and use posterior draws in the last

2,000 iterations to estimate model parameters and common factors.

Nowcasting results (focusing on the out-of-sample period) are plotted in Figure 2.9, with the left

panel being BAY approach, the right panel being GRS approach, and the 3 rows being 3 nowcasting

months. In each subplot, the solid curve is the real GDP, while 8 other curves in different colors

and line types represent nowcasting results from 8 different release dates. In general, both GRS

and BAY capture the trend of real GDP reasonably well. However, there is less variation in BAY

nowcasts from release to release than in GRS nowcasts for all 3 nowcasting months. GRS nowcasts

deviate further away from the real GDP for the first couple of releases, especially in the third

nowcasting month.

The measure of nowcasting errors, MANE, can be computed in the same fashion as in simulation

study. Figure 2.10 plots the relative ratios of MANEs for both GRS (1st row) and BAY (2nd row)

approaches using RW as the baseline. Three columns are for 3 nowcasting months, and 8 bars in

each subplot represent 8 different dates. The horizontal line located at 100% is the reference line for

RW. Table 2.6 summarizes the percentages of reduction in MANEs of both methods relative to RW,

defined in the same way as in Section 2.3.2. Each panel in Table 2.6 reports a nowcasting month.

According to Figure 2.10, for the first 5 releases, BAY outperforms GRS in terms of having smaller

nowcasting errors for all 3 nowcasting months. This is particularly true for RL1, RL4, and RL5 (RL

stands for release). It is interesting to see that MANE’s of GRS are bigger than RW, especially in

the third month. This is the same story found in Yiu and Chow (2011). One conclusion drawn by

Yiu and Chow is that the Producer Price Index only ruins the nowcasting, and this particular data

block is contained in the 4th release. However, we find the 4th release actually results in smaller

MANEs in BAY nowcasts than in RW nowcasts. For the last 3 releases, GRS performs better than

BAY in the 1st and 3rd nowcasting months, but not in the 2nd nowcasting month. Consistent with

these findings shown in Figure 2.10, Table 2.6 provides numerical comparisons of two methods,

relative to RW. The last column in each panel reports the averages of percentages of reduction in

MANEs relative to RW across all 8 releases. On average, the percentages of reduction in nowcasting
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errors in BAY approach increases when moving from the 1st month (2.93% reduction), to the 2nd

month (5.79% reduction), and to the 3rd month (14.76% reduction). However, we don’t see this

effect in the averages of reduction percentages for GRS approach. Across 3 nowcasting months,

BAY results in the least amount of nowcasting errors in the 3rd month, ranging from 10% reduction

to 18% reduction.

Table 2.6: Percentage of reduction in MANE’s of both methods relative to RW, i.e. (MANEm −
MANERW )/MANERW ×100 (in %), where m ∈ {BAY,GRS}, for empirical studies. M1/M2/M3

stands for the first/second/third nowcasting month.

Method
M1 M1 M1 M1 M1 M1 M1 M1

Average
RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

BAY -0.94% -3.47% 0.07% -5.73% -6.98% -2.87% -3.95% 0.40% -2.93%

GRS 47.37% -2.50% 0.78% 16.54% -3.71% -16.72% -13.73% -12.92% 1.89%

Method
M2 M2 M2 M2 M2 M2 M2 M2

Average
RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

BAY -0.21% -7.58% -9.40% -4.91% -5.61% -10.09% -2.14% -6.41% -5.79%

GRS 7.87% 1.17% 2.08% 5.36% -3.42% -3.12% -2.74% -2.97% 0.53%

Method
M3 M3 M3 M3 M3 M3 M3 M3

Average
RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

BAY -15.39% -10.80% -14.48% -14.43% -17.77% -15.27% -17.73% -12.26% -14.76%

GRS 44.70% 2.23% 0.18% 89.49% 26.85% -24.70% -16.47% -14.24% 13.50%

Both methods can also estimate the latent common factors. Figure 2.11 plots the in-sample

estimates for Ft by GRS and BAY approaches. Both methods estimate similar paths for the 1st

and 2nd factors, but slightly differ on the 3rd factor.

Collectively, the empirical analysis in this section demonstrates the empirical relevance of the

BAY approach in nowcasting China’s GDP for the time period considered. These results, however,

don’t suggest that we should completely abandon GRS approach. In fact, (as we mention) for

the last 3 releases in this dataset, GRS performs better than BAY in the 1st and 3rd nowcasting

months.
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Figure 2.9: Nowcasting performance in the empirical study, the left panel being BAY approach,

the right panel being GRS approach, and the 3 rows being 3 nowcasting months. In each subplot,

the solid curve is the real GDP, while 8 other curves in different colors and line types represent

nowcasting results from 8 different release dates.
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Figure 2.10: Relative ratios of MANE’s for both GRS (1st row) and BAY (2nd row) approaches

using RW as the baseline. Three columns are for 3 nowcasting months, and 8 bars in each subplot

represent 8 different dates. RL stands for release.
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Figure 2.11: Estimates of 3 latent factors from both GRS and BAY methods in the empirical study.
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CHAPTER 3. NOWCASTING GDP USING DYNAMIC FACTOR MODEL

WITH UNKNOWN NUMBER OF FACTORS

In this Chapter, we develop a Bayesian approach to identify the unknown number of factors

and estimate the latent dynamic factors of DFMs accurately in a real-time nowcasting framework.

The proposed method can deal with the unbalanced data, which is typical of a real-time nowcasting

analysis. We demonstrate the validity of our approach through simulation and explore the applica-

bility of our approach through an empirical study in nowcasting US’s quarterly GDP growth using

monthly data series of several categories in the US market.

3.1 Structure of Dataset and Model Set-ups

In Section 3.1.1, we introduce the notations and model set-ups used in our BAY approach when

volatility is constant. In Section 3.1.2 we formalize the unbalanced data structure, which is typical

of a real time nowcasting analysis.

3.1.1 DFM with Constant Volatility

Since there are numerous series in the information set, modeling y (GDP) directly on all x

(monthly series) would involve too many parameters, and hence the model performs poorly in

nowcasting/forecasting because of the large uncertainty in parameters’ estimation (“the curse of

dimensionality”). The fundamental idea of DFMs is to explore the collinearity of the series by

summarizing all available information into a few common factors. Because of collinearity, a linear

combination of the common factors can approximate the dynamic interactions among the series

and to can lead to a parsimonious model that works well in nowcasting/forecasting. The DFM

considered in this chapter is specified in the following ways.
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First, we assume the monthly data series is a linear function of a few unobserved common

factors Ft,

xt = µ+ ΘFt + εt, (3.1)

where xt = (x1,t, ...., xn,t)
′ be a n × 1 monthly data series at month t, for t = 1, ..., T , Ft =

(f1t, · · · , frt)′ be a r× 1 monthly common factors at month t, Θ is the n× r factor loading matrix,

µ is the r × 1 mean vector, and εt ∼ N(0,Ωn×n). The number of latent factors, r, is assumed to

be unknown and satisfies r << n. Then we further specify the dynamics of the common factors as

follows,

Ft = AFt−1 + ut, (3.2)

where A is a r×r matrix and all roots of |Ir−Az| lie outside the unit circle (Ir denotes r×r identity

matrix), and ut ∼ N(0,Σr×r). Finally, the quarterly GDP is assumed to be a linear function of

the common factors in each month of the quarter and its own lag,

yk = β0 + β′1F3k + β′2F3k−1 + β′3F3k−2 + β4yk−1 + νk, (3.3)

where β0, β4 are scalars, β1,β2,β3 are r × 1 vectors, vk ∼ N(0, η2), and k = 1, ...,K. We assume

3K + 1 ≤ T ≤ 3K + 3. The DFM specified this way not only can bridge the information contained

in monthly data series with the quarterly GDP, but also helps reduce the dimension of parameters,

thus increasing the degrees of freedom.

It is known that DFMs suffer from a non-identifiable issue. Following Stock and Watson (2002),

two sets of assumptions (Assumption F and Assumption M) are constructed (details are in Appendix

A). Specifically in this chapter, some restrictions are imposed on matrices A and Σ in the dynamics

of latent factors in equation (3.2) as follows, A = diag(a1, a2, ..., ar) and Σ = diag(σ21, σ
2
2, ..., σ

2
r ),

where |aj | < 1 (j = 1, ..., r) and σ2i /(1− a2i ) > σ2j /(1− a2j ), ∀i < j (for i, j = 1, ..., r). Under these

specified A and Σ, fj,t = ajfj,t−1 + σjuj,t for j = 1, ..., r and uj,t ∼ N(0, 1). These restrictions

together with the prior specification for loading matrix Θ (discussed later) satisfy the identification

assumption F1 in Appendix A. Stock and Watson (2002) concluded that this assumption identified

the factors up to a change of sign.
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Stock and Watson (2002) also showed the first r principal components obtained from the co-

variance matrix of xt are consistent estimators of the latent factors in DFMs if r is known. The

consistency of the principal components estimator of Ft can also be found in Connor and Korajczyk

(1986), Bai (2003) and others. Borrowing the idea in Zhang et al. (2013) we introduce a binary

indicator matrix Z associated with the factors into our model,

xt = µ+ ΘZFt + εt, for t = 1, ..., T

Ft = AFt−1 + ut, for t = 1, ..., T (3.4)

yk = β0 + β′1ZF3k + β′2ZF3k−1 + β′3ZF3k−2 + β4yk−1 + νk, for k = 1, ...,K

where Z = diag(z1, z2, ..., zR) is a R×R diagonal matrix with binary entries zj ∈ {0, 1} (j = 1, ..., R)

for some R > r. R denotes the maximum number of candidate latent factors, and is predetermined

satisfying R << n. Now, Ft = (f1t, · · · , fRt)′ is a R × 1 vector, collecting R candidate factors

to be selected at month t, Θ is the n × R factor loading matrix, A = diag(a1, a2, ..., aR), Σ =

diag(σ21, σ
2
2, ..., σ

2
R), and βi’s (i = 2, 3, 4) are R × 1 vectors. Matrices A,Σ and Θ have the same

restrictions as stated previously. Furthermore, we model Z as

zj ∼ Bernoulli(pj), where 0 ≤ pj ≤ 1 for j = 1, ..., R. (3.5)

Indicator zj determines whether the jth latent factor is included in the model or not. For

example, assuming R = 4, if Z = diag(1, 1, 0, 0), then ZFt = diag(1, 1, 0, 0)(f1t, f2t, f3t, f4t)
′ =

(f1t, f2t, 0, 0)′, impling the third and fourth latent factors do not contribute in explaining the dy-

namic interaction of xt and yk. Thus the true number of latent factors is r = 2 in this case.

The number of latent factors is only determined by the number of 1’s in the diagonal of Z, i.e.

r =
∑R

j=1 zj . In this way, estimating r is now equivalent to selecting the true number of latent

factors, or in other words, estimating Z. Section 3.2.1 talks about the estimation procedure of Z.

3.1.2 Working With Unbalanced Data

In real time, macroeconomic series are released with diverse lags, some series have observations

through the current month, whereas for others the most recent observations are from the previous



www.manaraa.com

37

months. For instance, measurements from survey such as the Empire State Manufacturing Survey

and Manufacturing Business Outlook Survey, tend to have no lag when released. On the other

hand, money stock measures, taking M1, M2, and M3 for example, usually have long release delay.

Consequently, the underlying data sets are unbalanced. Appropriately dealing with this unbalanced

feature of the data is crucial for nowcasting.

Suppose we are in month T of quarter K + 1, we want to nowcast GDP in the current quarter,

yK+1, using all monthly information up through month T (the end of the sample), where T can be

the first (T = 3K + 1), second (T = 3K + 2), or third (T = 3K + 3) month of quarter K + 1. To

simplify life, we assume the release structures are exactly the same across all months. Let q denotes

the release date within month T , and consider there are Q different release dates, i.e q = 1, ..., Q.

Let nq denote the number of series that are newly released at the release date q. When we say at

q, we are referring to the time point when the release has already happend, i.e. at q, the nq newly

released series are available already. Due to diverse lags among monthly series, these nq series do

not necessarily refer to the same month. Let Tq denote the latest month in which all monthly data

series are availabe at release date q, i.e. data is balanced for t = 1, ..., Tq, and for t = Tq + 1, ..., T

data is unbalanced. Let vq,t denotes the set of indexes of monthly series that are available at q for

month t = Tq + 1, ..., T . So, the monthly series that are available at q for month t = Tq + 1, ..., T

are denoted as xi∈vq,t . Let nq,t denote the number of monthly series in xi∈vq,t for t = Tq + 1, ..., T .

Consider a toy example of n = 6 monthly series, xt = (x1,t, x2,t, x3,t, x4,t, x5,t, x6,t)
′. Without

loss of generality, xit can always be arranged such that index i follows the order of release dates.

Pretending we are at the release date q of month T of quarter K + 1, Table 3.1 gives an overall

picture of the entire dataset available when doing nowcast at q. The monthly data that is available

are higlighted in gray cells in the table. At q, monthly data is balanced up to month T − 3

therefore Tq = T − 3. For month t = Tq + 1 = T − 2, {x1,t, x2,t, x3,t, x4,t, x5,t} are available, so

vq,T−2 = {1, 2, 3, 4, 5} and xi∈vq,T−2 = (x1,T−2, x2,T−2, x3,T−2, x4,T−2, x5,T−2)
′. Similarly, for month

t = Tq + 2 = T − 1, we have vq,T−1 = {1, 2, 3} with xi∈vq,T−1 = (x1,T−1, x2,T−1, x3,T−1)
′; for month

t = T , we have vq,T = {1, 2} with xi∈vq,T = (x1,T , x2,T )′.
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Table 3.1: Overall picture of the entire dataset available at the one release date of the second month

in the current quarter. Cells highlighted in gray color indicates the corresponding variables in the

cells are available.

k 1 2 · · · K K+1

t 1 2 3 4 5 6 · · · T − 4 T − 3 T − 2 T − 1 T T + 1

xi,t

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 · · · x1,T−4 x1,T−3 x1,T−2 x1,T−1 x1,T NA

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 · · · x2,T−4 x2,T−3 x2,T−2 x2,T−1 x2,T NA

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 · · · x3,T−4 x3,T−3 x3,T−2 x3,T−1 NA NA

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 · · · x4,T−4 x4,T−3 x4,T−2 NA NA NA

x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 · · · x5,T−4 x5,T−3 x5,T−2 NA NA NA

x6,1 x6,2 x6,3 x6,4 x6,5 x6,6 · · · x6,T−4 x6,T−3 NA NA NA NA

yk y1 y2 · · · yK yK+1

Ft F1 F2 F3 F4 F5 F6 · · · FT−4 FT−3 FT−2 FT−1 FT

The observations, available to use at the release date q of month T , include Y = {y1, y2, ..., yK}

and Xq = {x1, ...,xTq ,xi∈vq,Tq+1 , ...,xi∈vq,T }. The goal is to nowcast yK+1 using all information

available at every release date q in the current quarter, i.e. real-time nowcasting. Note that the

factors F = {F1, ...,FT } are not observed, and need to be estimated using the adjusted Kalman Fil-

ter (e.g. the GRS approach), or using the Bayesian smoothing techniques (e.g. our BAY approach).

At every new release date q (q = 1, ..., Q), model parameters and latent variables are updated with

this additional information from the new release, and nowcast of yK+1 is re-produced. Therefore

there are 3 × Q nowcast results in the current quarter. How to handle the unbalanced feature of

the monthly data series will be discussed in Section 3.2.1.

At any release date q, we have observations Xq and Y; latent variables Z and F; and model

parameters Φcv = {µ,Θ,A,Σ, β0,β1,β2,β3, β4, η
2, p1, ..., pR,Ω}. The goals are to estimate model

parameters and latent variables using the observables, and to nowcast the current quarter GDP

yK+1 at every release date q for q = 1, ..., Q in month T for T = 3K + 1, 3K + 2, 3K + 3.
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3.2 Bayesian MCMC Estimation Method and Nowcasting

In Section 3.2.1, we outline the MCMC algorithm to estimate model parameters including the

number of factors and latent dynamic factors. Formulas for nowcasting are provided in Section

3.2.2.

3.2.1 Estimating DFM With Constant Volatility via MCMC

We face a couple of challenges in estimating the above model. First, it is computationally

infeasible to integrate out the high-dimensional latent factors Ft to obtain the likelihood based only

on observables. Second, the observations in the panel of Xq = {x1, ...xTq ,xi∈vq,Tq+1
, ...,xi∈vq,T }

are not balanced. To overcome these difficulties, we develop a Bayesian MCMC approach for

estimating the above DFM in real time. MCMC conducts inferences by simulating efficiently

from (potentially complicated) posterior distributions of model parameters and latent variables

given the observables. MCMC samples from the typically high-dimensional and complex posterior

distributions by generating a Markov Chain over parameters and latent variables whose equilibrium

distribution is the desired posterior distribution. The Monte Carlo method uses these samples for

numerical integration for parameter and state estimation.

In order to facilitate the derivation of the joint posterior distribution, the dynamic of xt in

equation (3.4) is rewritten as

xt = µ+ [In×n ⊗ (ZFt)
′] ∗ θ + εt,

where θ = vec(Θ) = (θ1, ...,θn)′ if Θ = (θ′1, ...,θ
′
n)′ such that θi (i = 1, ..., n) is a 1 × R vector

representing the ith row of Θ. Thus the conditional density of xt in equation (3.4) is

xt|µ,Z,Ft,Θ,Ω ∼ N(µ+ [In×n ⊗ (ZFt)
′] ∗ θ,Ω), for t = 1, ..., Tq. (3.6)

The conditional density of Ft in equation (3.4) is

Ft|Ft−1,A,Σ ∼ N(AFt−1,Σ), for t = 2, ..., T, (3.7)
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and the conditional density of yk in equation (3.4) is

yk|β,Z,F3k,F3k−1,F3k−2, yk−1, η
2

∼ N(β0 + β′1ZF3k + β′2ZF3k−1 + β′3ZF3k−2 + β4yk−1, η
2), (3.8)

for k = 2, ...,K. The joint posterior distribution, p(Φcv,F,Z|Y,Xq), can be decomposed into

products of individual conditionals,

p(Φcv,F,Z|Y,Xq) ∝ p(Y,Xq,Φ
cv,F,Z)

∝
Tq∏
t=1

p(xt|µ,Z,Ft,θ,Ω)

T∏
t=Tq+1

p(xi∈vq,t |µ,Z,Ft,θ,Ω)

×
K∏
k=2

p(yk|β,Z,F3k,F3k−1,F3k−2, yk−1, η
2)×

T∏
t=2

p(Ft|Ft−1,A,Σ)×
R∏
j=1

p(zj |pj)

× p(Φcv), (3.9)

where p(xt|µ,Z,Ft,θ,Ω), p(Ft|Ft−1,A,Σ), p(yk|β,Z,F3k,F3k−1,F3k−2, yk−1, η
2), and p(zj |pj) are

given according to the distributions in equations (3.6), (3.7), (3.8), and (3.5) respectively. Here

p(Φcv) is the prior distribution for Φcv, which will be specified later.

To deal with the missing data in xi∈vq,t at the end of the sample (t = Tq + 1, ..., T ), we define

an indicator matrix 1vq,t as a nq,t × n matrix obtained by deleting the ith row from the identity

matrix In×n if the corresponding xi,t is missing at q, where i could be any index from i = 1, ..., n.

For the toy example discussed in Table 3.1 Section 3.1.2, we have

1vq,T−2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


, 1vq,T−1 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 , 1vq,T =

 1 0 0 0 0 0

0 1 0 0 0 0

 .

Then we can write xi∈vq,t as xi∈vq,t = 1vq,txt, thus the conditional density of xi∈vq,t in equation

(3.9) is, for t = Tq + 1, ..., T ,

xi∈vq,t = 1vq,txt|µ,Z,Ft,Θ,Ω ∼ N(1vq,t(µ+ [In×n ⊗ (ZFt)
′] ∗ θ),1vq,tΩ1′vq,t). (3.10)



www.manaraa.com

41

We complete the model specification by assigning prior distributions for Φcv and Z in Bayesian

framework.

We set the prior for µ as,

µn×1 ∼ N(0n×1, In×n). (3.11)

The prior for Θ is

Θn×R ∼Matrix Normal(0n×R, In×n, IR×R). (3.12)

In this way, the identification assumption F1 in Appendix A is satisfied by the law of large number.

The prior for Ω is

Ωn×n ∼ Inverse Wishart
( 1

n
In×n, νθ

)
, (3.13)

where νθ is a pre-specified scalar. This prior allows εt to be correlated across series, satisfying

assumption M1 in Appendix A.

The prior for A is standard normal truncated at [−1, 1], for j = 1, ..., R, that is

p(aj) =



0 if aj ≤ −1

φ(aj)

Φ(1)− Φ(−1)
if − 1 < aj < 1

0 if aj ≥ 1

, (3.14)

where φ(·) and Φ(·) are PDF and CDF for standard normal distribution respectively. And p(A) =∏R
j=1 p(aj).

The prior for Σ is, for j = 1, ..., R,

σ2j
iid∼ Inverse Gamma(αs, βs), (3.15)

where αs > 0, βs > 0 are prespecified scalars. And p(Σ) =
∏R
j=1 p(σj).

The prior for β = (β0,β
′
1,β

′
2,β

′
3, β4)

′ is

β(3R+2)×1 ∼ N(0(3R+2)×1, I(3R+2)×(3R+2)). (3.16)

The prior for η2 is

η2 ∼ Inverse Gamma(αh, βh), (3.17)
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where αh > 0, βh > 0 are pre-specified scalars.

The prior for pj is, for j = 2, ..., R,

pj ∼ (1− πj)1{pj=0} + πjBeta(αp, βp), (3.18)

where αp > 0, βp > 0 are pre-specified scalars and π is a hyperparameter satisfying 0 < π < 1.

Notice that the prior of pj start at j = 2, because we assume z1 = 1 with probability 1 (i.e.

p(z1 = 1) = 1). We believe there is at least one important factor and the importance of factors

decreases as j increases based on the identifiable conditions stated in Section 2.2. The prior of pj

looks like a zero-inflated Beta distribution with unequal weights depending on πj (j = 2, ..., R).

The zero point mass has a weight of (1−πj), implying a higher probability of obtaining exact zero

for pj as j increases.

The prior for the hyperparameter π is

π ∼ Beta(απ, βπ), (3.19)

where απ > 0, βπ > 0 are pre-specified scalars. Equations (3.18)-(3.19) imply the joint prior for

(p1, ..., pR, π) is p(p1, ..., pR, π) ∝
∏R
j=2 p(pj |π)p(π). We assume other priors are independent.

Following standard MCMC procedure, we derive the complete conditional distributions for

each parameter and latent variables, and obtain posterior samples by simulating from these in-

dividual complete conditionals iteratively. More specifically, we obtain the posterior distribution

p(Φi|Φcv
−i,Y,Xq,F,Z) where Φi is the ith element of Φcv and Φcv

−i contains all the parameters ex-

cept for Φi, and the posterior distribution for latent variables including p(Ft|Φcv,Y,Xq,Z) for all

t, and p(Z|Φcv,Y,Xq,F). In a Markov chain, the current state only depends on the most recent

previous state. MCMC is a conditional simulation methodology that generates random samples

from a given target distribution, i.e. the posterior distribution. Assume after a paticular iteration g

within the MCMC algorithm, we obtain posterior samples (Φcv)(g),F(g),Z(g). In the next iteration

g+ 1, we first generate Φ
(g+1)
1 from p(Φ1|(Φcv

−1)
(g),Y,Xq,F

(g),Z(g)), then we generate Φ
(g+1)
2 from

p(Φ2|Φ(g+1)
1 , (Φcv

{−1,−2})
(g),Y,Xq,F

(g),Z(g)). We keep the process until we have all (Φi)
(g+1) for all

i. Next, we generate F
(g+1)
t from p(Ft|(Φcv)(g+1),Y,Xq,Z

(g)) for all t. Lastly we generate Z(g+1)
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from p(Z|(Φcv)(g+1),Y,Xq,F
(g+1)). This sequence of posterior samples forms a Markov Chain

whose distribution converges to the target posterior distribution.

In estimation, we draw posterior samples from the above complete conditional distributions and

use the means of the posterior samples as parameter estimates, i.e. Φ̂cv
i = 1

G

∑G
g=1(Φ

cv
i )(g), where

g = 1, ..., G denotes the MCMC iterations after burn-in and (Φcv
i )(g) is the gth posterior draw of

parameter Φcv
i . Latent variables Ft is also esimated using posterior means, i.e. F̂t = 1

G

∑G
g=1 F

(g)
t

for t = 1, ..., T . In each iteration, the number of latent factors is simply estimated by counting

how many 1’s in the diagonal of Ẑ(g). Thus the estimated number of factors is obtained using

r̂ = 1
G

∑G
g=1 r̂

(g) where r̂(g) =
∑R

j=1 z
(g)
j . r̂ is further rounded to the nearest integer. Appendix C

provides the posterior distributions for all model parameters and latent variables Ft and Z.

3.2.2 Nowcasting GDP yK+1 and Estimating the Number of Factors

After MCMC converges, we obtain sequences of posterior draws for parameters and latent

variables, which can now be used to construct nowcasts. Recall that we have complete xt for

t = 1, ..., Tq, unbalanced xi∈vq,t for t = Tq + 1, ..., T , and associated yk for k = 1, ...,K available.

Suppose we are at q (q = 1, ..., Q) in month T (T = 3K + 1, 3K + 2, 3K + 3) of quarter K, the task

is to nowcast yK+1 based on {x1, ....,xTq ,xi∈vq,Tq+1 , ...,xi∈vq,T } and {y1, ..., yK}.

Let β
(g)
0 , β

(g)
i (i = 1, 2, 3), β

(g)
4 , A(g), F

(g)
t (t = 1, ..., T ), and Z(g) be the gth posterior draws of

parameters and latent variables after the burn-in period, where g = 1, ..., G. The nowcast can be

calculated as follows, for model with constant volatility.

• Quarter K + 1’s nowcast by BAY in the first month (T = 3K + 1) is given by:

ŷqK+1 =
1

G

G∑
g=1

[
β
(g)
0 + (β

(g)
1 )′Z(g)(A(g))2F

(g)
T

+ (β
(g)
2 )′Z(g)A(g)F

(g)
T + (β

(g)
3 )′Z(g)F

(g)
T + β

(g)
4 yK

]
, (3.20)

• Quarter K + 1’s nowcast by BAY in the second month (T = 3K + 2) is given by:

ŷqK+1 =
1

G

G∑
g=1

[
β
(g)
0 + (β

(g)
1 )′A(g)F

(g)
T + (β

(g)
2 )′F

(g)
T + (β

(g)
3 )′F

(g)
T−1 + β

(g)
4 yK

]
, (3.21)
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• Quarter K + 1’s nowcast by BAY in the third month (T = 3K + 3) is given by:

ŷqK+1 =
1

G

G∑
g=1

[
β
(g)
0 + (β

(g)
1 )′F

(g)
T + (β

(g)
2 )′F

(g)
T−1 + (β

(g)
3 )′F

(g)
T−2 + β

(g)
4 yK

]
. (3.22)

Above nowcasting equations imply that at any q within month T , we have posterior samples

of F
(g)
T , which may not be the case when we deal with a specific release structure/pattern in real

time. Modifications are necessary depending on a specific release pattern. In the next section when

we introduce the release structure used in simulations, we give an example of how we modify the

nowcasting equations. Note that all of these β
(g)
0 , β

(g)
i ’s, β

(g)
4 , A(g), F

(g)
t , and Z(g), are updated in

every release date within a month. Therefore, nowcasts are re-produced for each q = 1, ..., Q.

3.3 Bayesian Approach in Nowcasting: Simulation Evidence

In this section, through numerical simulation, we investigate three questions on our BAY ap-

proach in nowcasting setting. The first question is whether it can identify the number of latent

dynamic factors r correctly. The second question is whether it can produce reliable nowcasting

results. And the third question is whether it can estimate the latent factors Ft. We answer these

three questions by evaluating estimation of the number of latent factors r, out-of-sample nowcasting

performance, and in-sample estimation of Ft.

We generate data according to the model in (3.4) where T = 180 (months), K = 60 (quarters),

r = 4 (number of latent factors), and Q = 3 (releases in each month). Table 3.2 visualizes the data

release pattern when nowcasting quarter K + 1’s GDP in month 3K + 1, 3K + 2, and 3K + 3.

For any T = 3K + 1, 3K + 2, 3K + 3, when q = 1, RL1 cell becomes available; when q = 2, RL2

cell becomes available; when q = 3, RL3 cell becomes available. Notice that when q = 1, 2, we

have xT = ∅ (an empty set), we cannot directly generate posterior samples F
(g)
T . As a solution, we

use F̃
(g)
T = A(g)F

(g)
T−1 to replace F

(g)
T in (3.20)-(3.22). When q = 3, since xT 6= ∅, we can directly

generate posterior samples F
(g)
T .

Simulation In this simulation, we let n = 50 (monthly data series), and (n1, n2, n3) = (20, 20, 10)

meaning 20 monthly series are released in the first and second releases, and 10 series become
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Table 3.2: Data Releasing Format in Simulation study when nowcasting quarter K + 1’s GDP in

month 3K + 1, 3K + 2, and 3K + 3. RL stands for release. Cells in red represents data released in

the first month 3K + 1. Cells in green represents data released on the second month 3K + 2. Cells

in blue represents data released in the third month 3K + 3.

Quarter K K + 1

Month 3K − 2 3K − 1 3K 3K + 1 3K + 2 3K + 3

n3 series Known Known Known RL3 RL3 RL3

n2 series Known Known RL2 RL2 RL2

n1 series Known RL1 RL1 RL1

available in the last release. The following parameters are used to generate the data: A =

diag(0.9,−0.8, 0.75, 0.7); Σ = diag(5.5, 3, 0.5, 0.25); β0 = 0.5, β1 = (2, 1.4, 1, 0.35)′; β2 = (1, 0.7,

0.5, 0.175)′; β3 = (0.5, 0.35, 0.25, 0.0875)′; β4 = 0.15; η2 = 2; each element of µ is simulated

from N(10, 1); Ω is simulated from Inverse Wishart(50, I50×50/50); and Θ is simulated from

Matrix Normal(0, I50×50, I4×4). This set-up assumes the importance of latent factors to monthly

series decreases when moving from the first latent factor to the last latent factor. Also, the third

month’s factor has the greatest impact when generating GDP, the second month’s factor has less

contribution to the GDP, and the first month’s factor is the least significant.

100 Monte Carlo sample paths are generated. For each data set, we nowcast the last 20 quarters’

GDP’s after each release during the 3 months in the quarter. Model parameters and latent variables

are estimated based on the most recent past 10 years of data up to the nowcasting month of that

quarter, i.e. T = 121, 122, 123 for each K + 1. The hyper-parameter values are set as follows:

νθ = n + 2 for the Inverse Wishart prior of Ω in (3.13) such that the expectation of Ω is 1
nIn×n;

(αs, βs) = (2, R + 2) for the Inverse Gamma prior of Σ in (3.15) such that the prior has infinite

variance; (αh, βh) = (2, 0.0001) for the Inverse Gamma prior of η2 in (3.17) such that the prior

has infinite variance; (αp, βp) = (1, 3) for the Beta prior of pj in (3.18) such that the prior places

higher mass on smaller value; (απ, βπ) = (2, 2) for the Beta prior of π in (3.19) such that the prior

is symmetric at 0.5.



www.manaraa.com

46

3.3.1 Estimating the Number of Latent Factors

Our algorithm requires a predetermined cap R for the number of factors r. R can be chosen to

be the same as the number of monthly series n. However from a practical standpoint, we prefer to

start with a relatively small value since a large R can result in heavy computational burden. Then

depending on the results, we either increase R by a small step and re-run the nowcasting exercises

or stop and conclude the current R is sufficient enough to estimate the number of factors correctly.

We mimic these two scenarios in practice (under and over specify the cap) by running two parallel

nowcasting exercises on all of the 100 data sets generated with R = 3 (under specified) and R = 6

(over specified) respectively, in hopes of providing practicle guidance of how to choose R.

Recall that we conduct nowcasting afer each release of 3 months for each of the last 20 quarters.

Thus there are 20(quarters) × 3(releases) × 100(data sets) = 6, 000 estimates for the number of

factors in each nowcasting month. Figure 3.1 shows the distribution of the 6,000 estimated number

of factors in each month. The results for R = 3 are in the first row, and R = 6 are in the second

row. Figure 3.1 suggests that the distribution of the estimated number of factors remains similar no

matter which month we are in when doing nowcasts. Another interesting observation (not shown in

this plot) is that the different releases have no effect on the estimation of the number of factors, or

in other words, given a particular month of a quarter, the additional new released data series does

not change the estimated number of factors. This is as expected since each additional new release

only adds 20 new data points compared to the already existed 10 years full history of monthly

series, hence the number of factors can be sufficiently estimated by the balanced portion of the

data. When we under specify the cap for the number of factors (i.e. the 1st row when R = 3) we

see a momotone increase in the bars and the peaks stops at the chosen cap R = 3. If we chose a

larger R > r (i.e. the 2nd row when R = 6), the bars peaks at the true number of factors, which is

r = 4 in this case, and quickly dies off when exceeding r. The findings in Figure 3.1 offer a useful

guidance for choosing R in practice. That is we can start with a relatively small R. If the results

look similar to what is shown in the 1st row, it suggests that R is chosen too small. In this case

one should increase R and re-run the nowcasting exercises until we obtain results similar to what is
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shown in the 2nd or 3rd row. Then we can safely conclude the peak of the distribution represents

the true number of factors, and the results are reliable.
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First Month Nowcast (R=6)
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Third Month Nowcast (R=6)
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Figure 3.1: Distribution of estimated number of latent factors by month when the true number of

factors r = 4. First row is the results for R = 3, second row is the results for R = 6. The first,

second, and third columns represent nowcasting in the first, second, and third month of the quarter

respectively. In each subplot, on the x-axis is the estimated number of factors, the height of the

bars represent the porpotion of the estimated number of factors.

Recall for each of the last 20 quarters, there are 3(releases) × 100(data sets) = 300 estimates

for the number of factors in each month. Since there is no difference in estimates among releases

within the same month, we pick one estimate out of 3 releases in a month to represent the estimate

of number of factors in that month. So there are 100 r̂’s used in each subplot of Figure 3.2, where

we present the 95% naive confidence interval based on these 100 estimates of the number of latent

factors over 20 quarters period by month. The results for R = 3 are in the first column, and the
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results for R = 6 are in the second column. The naive confidence intervals are calculated from

normal approximation based on 100 nowcasts for each quarter. The flat black line represent the

true number of factors, the red dashed line is the mean of the 100 estimates. The CIs do not

capture the true number of latent factors in the first column since R = 3 is chosen too small. For

R = 6, the CIs capture the true number of factors across all months in all quarters. We conclude

jointly from Figure 3.1 and Figure 3.2, our BAY approach can adequately estimate the number of

latent factors of DFMs in the context of nowcasting.

3.3.2 Out-of-sample Nowcasting Performance

Out-of-sample nowcasting performance is assessed based on 20 one-step-ahead nowcastings av-

eraged across the 100 data sets. We use the mean absolute nowcasting error (MANE) as a measure

of nowcasting accuracy. Let ŷqK+1 be the nowcast calculated according to (3.20) - (3.22) at qth

release date of month T for a given data set, where q = 1, 2, 3 and T = 3K + 1 (first month

nowcast), or T = 3K + 2 (second month nowcast), or T = 3K + 3 (third month nowcast) of the

current quarter K + 1. Then MANE(q, T ) = 20−1
∑60

K+1=41 |ŷ
q
K+1 − yK+1|. Lastly, MANEs are

averaged across the 100 data sets. To compare the nowcasting performance with the random walk

(RW) approach, which takes GDP from the previous quarter as the nowcast for the current quarter

GDP, relative MANEs (relative to the MANE of RW) are used. Figure 3.6 shows the ratios (in

percentages) of MANE’s of our BAY approach to the MANE of RW in 9 combinations of 3 releases

and 3 nowcasting months, averaged across 100 data sets. Panel (a) is for R = 3, panel (b) is for

R = 6. The horizontal line is 100% representing the baseline for RW, with first, second, and third

release colored in dark gray, gray, and light gray respectively. Bars shorter than the reference line

indicates that nowcasts are better than RW, otherwise worse than RW. Figure 3.6 suggests, mov-

ing from the first month to the third month, there are significant reductions in terms of MANE’s.

Comparing MANEs between releases in the same month, there is no significant change in MANEs

from the first release to the second release, however, the third release sees a significant decrease in

MANEs comparing to the second release.
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This is due to the design of the release structure. Refer back to Table 3.2, take T = 3K + 1

as an example, when q = 1, F
(g)
T is projected using F

(g)
T−1 which is estimated using balanced data

from t = 1, ..., T − 3 (3K − 2), n2 + n3 data points at t = T − 2 (3K − 1), and n3 data points

at t = T − 1 (3K); when q = 2, F
(g)
T is again projected using F

(g)
T−1 which is now estimated using

balanced data from t = 1, ..., T −2 (3K−1), and n2+n3 data points at t = T −1 (3K); when q = 3,

since now xT is not empty anymore, comparing to the first and second release, F
(g)
T can be directly

estimated using balanced data from t = 1, ..., T −2 (3K−1), n2 +n3 data points at t = T −1 (3K),

and n3 data points at t = T (3K + 1). Therefore, if a new release just add additional data points

to month that already had some data information prior to the new release, the improvement in

MANEs is negligible. If the new release adds new information of a month for the first time, the

MANEs drop noticeably. This is true for T = 3K + 2 and T = 3K + 3. MANEs of R = 6 are

uniformly better than MANEs of R = 3 for Simulation 1 since the true number of factors is 4.

Comparing MANEs of Simulation 2 to Simulation 1 with R = 6 , the latter has slightly better

MANEs across all nine combinations of 3 releases and 3 nowcasting months due to the reason that

the model is more parsimonious than the model with SV, thus retain higher nowcasting power.

Table 3.3, the numerical summary of MANE reduction relative to RW for both simulations confirm

the above observations. The BAY approach beats RW in terms of nowcasting errors.

To see how nowcasts results capture the trends of GDP, we choose one data set at random

and look at its nowcasting performance across last 20 quarters. Figure 3.7 shows the nowcasting

performance. The first, second, and third row are trend plots of nowcasts over the last 20 quarters

in the first, second, and third month respectively. In each subplot, the curves colored in red, green

and blue with different line types and knot types represent the nowcast results based on the first,

second, and third release dates in a given month of a given quarter respectively. Our BAY approach

gives reasonable nowcasting trend from the very first release in the first month all the way to the

last release in the third month of a quarter. Nowcastings based on the 3rd release are slightly closer

to the true trend comparing to nowcasts based on the 1st and 2nd release in the same month. Also
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Table 3.3: This table reports the percentages of reduction in MANE’s relative to RW, i.e.

(MANER − MANERW )/MANERW × 100 (in %). Panel (a) is for R = 3, panel (b) is for

R = 6

(a) Percentage of reductions in MANE’s relative to RW for R = 3

Release 1st Month 2nd Month 3rd Month

1st -11.30% -30.10% -50.70%

2nd -11.39% -30.67% -52.14%

3rd -31.67% -51.13% -72.65%

Average -18.12% -37.30% -58.50%

(b) Percentage of reductions in MANE’s relative to RW for for R = 6

Release 1st Month 2nd Month 3rd Month

1st -11.67% -32.58% -53.37%

2nd -11.93% -33.08% -53.72%

3rd -32.92% -54.39% -77.01%

Average -18.84% -40.02% -61.37%

improvement can be spotted when moving from nowcasts in the first month to nowcasts in the

third month.

3.3.3 Estimation of Latent Variables

To assess the precision in the estimated latent state variables, we further look at the in-sample

estimation of latent dynamic factors for the same randomly chosen data set the previous section.

The in-sample analysis uses balanced information of the first 100 months of the data (t = 1, ..., 100).

Figure 3.8 plots the estimated in-sample fit of the first four latent factors versus the true value.

The absolute value is plotted against each other since as mentioned previously, the factors are

identifiable up to a change of sign. Figure 3.8 shows that the estimated latent factors are close to

the true factors, which confirms that by introducing Assumption F and Assumption M, the latent

factors are identifiable.
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In summary, our simulation results suggest that the BAY method can estimate the number of

latent factors correctly, has the ability to estimate the latent dynamic factors well and produce

reliable nowcasting results.

3.4 Bayesian Approach in Nowcasting: Empirical Evidence

In this section, we examine the empirical performance of our BAY method in nowcasting the

US’s quarterly GDP growth rate.

The New York Fed Staff Nowcast platform updates its estimates of GDP growth for the current

and subsequent quarter every Friday at 11:15 a.m., which can be found on the Federal Reserve Bank

of New Yorks public website (https://www.newyorkfed.org/research/policy/nowcast). The

underlying data set is also available on Github (https://github.com/FRBNY-TimeSeriesAnalysis/

Nowcasting). We decide to borrow the data for our empirical study. We choose the data from

1993Q1 to 2016Q4 in our nowcasting exercise, the nowcasting horizon covers 2003Q1 to 2016Q4 and

in each quarter we nowcast the current quarter’s GDP. GDP (Yk) enters the model as annualized

quarter-over-quarter percentage change, which is calculated as

Yk = {(1 +
GDPk −GDPk−1

GDPk−1
)4 − 1} × 100, (3.23)

where GDPk is the real GDP for quarter k. Figure 3.9 plots the real GDP growth rate computed

by (3.23), and to the right of the dashed line is the nowcasting horizon of 2003Q1 to 2016Q4.

The latent common factors are distilled from 30 monthly data series, which are released by

both government agencies and private institutions. The monthly series are assigned into 9 different

categories/blocks (ADP National Employment Report, housing and construction, manufacturing,

surveys, retail and consumption, income, labor, and international trade) based on economic insight.

The real chronological release dates are hard to mimic since they vary from month to month, quarter

to quarter, year to year. However, there is a roughly consistent pattern that can be used as a good

proxy. Based on the approximate release date of each individual series and to align with simulation

set up, we group the 30 monthly series into 3 release dates: 10th of the month, 20th of the month,

https://www.newyorkfed.org/research/policy/nowcast
https://github.com/FRBNY-TimeSeriesAnalysis/Nowcasting
https://github.com/FRBNY-TimeSeriesAnalysis/Nowcasting
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and 30th of the month (assume 30 days in each month for simplicity). The monthly series that

released between release is treated as if they are released together on the release date. Three

transformations are performed on the monthly series in the interest of inducing stationarity. Table

3.4, 3.5, and 3.6 provide release structure, data transformation, and details of each individual series.

We nowcast 56 quarters’ GDP using the BAY approach using R = 6.

Table 3.4: Data Releasing Format of month T for empirical data. RL stands for Release, with

release 1 colored in red, release 2 colored in green, and releae 3 colored in blue. The number in

parentheses is the number of series for that particular release. Set 1 to 6 are for notation puporse.

Month T − 3 T − 2 T − 1 T

Set 1 Known Known Known RL2(2)

Set 2 Known Known RL1(3)

Set 3 Known Known RL2(10)

Set 4 Known Known RL3(5)

Set 5 Known RL1(7)

Set 6 Known RL2(3)

Table 3.5: Data Transformation. x∗it denotes the raw data and xit denotes the transformed data.

Code Transformation Description

1 xit = x∗it no transformation

2 xit = x∗it − x∗i,t−1 level change

3 xit =
x∗it−x∗i,t−1

x∗i,t−1
× 100 MoM % change

In each month, there are 56(quarters)×3(releases)=168 estimates of the number of factors.

Figure 3.10 shows the distribution of the estimated number of latent factors by month. Consistently

over the 3 nowcasting months, the estimated number of latent factors is 1 approximately 90% of the

time, with the rest 10% all concentrated on 2 and completely dies off at 3 for both. This suggests

that for these particular 30 US market macroeconomic series, 1 factor is sufficient to summarise

the information. In fact, PCA on these 30 monthly series over 1993Q1 to 2016Q4 tells that the
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first PC itself explains 60.29% of the variation among series, the second and third PC add 26.85%

and 10.00% of the variation respectively, and the fourth PC only explains 2.56% of the variation.

Figure 3.11 plots the evolution of the out-of-sample GDP nowcasts over the last 56 quarters in

each month based on 3 releases. In each subplot, the solid curve is the real GDP, while 3 other

curves in different colors, line types and knot types represent nowcasting results from 3 different

release dates. In general, our approach capture the trend of real GDP reasonably well. For the

period prior to the 2008 to 2009 recession, nowcasts do not reflect much difference. During the

recession, nowcasts have a clear lag in predicting the economy’s downfall, but successfully capture

the bouncing back trend when the economy recovers from the stress period.

The measure of nowcasting errors, MANE, can be computed in the same fashion as in simulation

study. Figure 3.12 plots the relative ratios of MANEs. Three columns are for 3 nowcasting months,

and 3 bars in each month represent 3 different release dates. The horizontal line located at 100%

is the reference line for RW. Table 3.7 provides numerical comparisons relative to RW. The last

row of Table 3.7 reports the averages of percentages of reduction in MANEs relative to RW across

all 3 releases for that month. On average, BAY nowcasts see the largest reduction in nowcasting

errors in the 1st month (23.31%), then drops significantly in the 2nd month (18.30%), and increase

slightly in the 3rd month (20.08%). In general, unlike simulation study, Figure 3.12 and Table 3.7

indicate that as more data become available through the quarter, only some releases improve the

nowcasting in terms of MANEs. Boivin and Ng (2006) studied how the size and the composition

of the data affect the factor estimates in DFMs and concluded that sample size alone does not

determine the properties of the estimates, the quality of the data must be taken into account.

Therefore, the MANEs are not ensured to decrease as more data become available. Bok et. al.

(2018) also found similar phenomenon. Another potential reason may be related to the notion

of lagging and leading indicators in economics. A lagging indicator is an economic statistic that

tends to have a delayed reaction to a change in the economic cycle. A leading indicator, on the

other hand, is an economic statistic that tends to predict future changes in the economic cycle.

Well-known lagging indicators such as unemployment, consumer price index, leading indicators
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such as consumer confidence, construction sector are mixed in the data set used for our empirical

study. Assuming the GDP function in (3.4) is appropriate, our model specification on the monthly

data series explicitly assumes the data in the same month all reflect the economic condition, i.e.

latent factors, in the same month, or in in other words, xt is generated by Ft. Lagging and leading

indicators suggest xi,t is generated by Ft−h for some lagging indicators i with lag h, and xj,t is

generated by Ft+h′ for some leading indicators j with lead h′. If this is true, estimating Ft using

data information from xt is actually not ideal thus new release is not guaranteed to bring more

information than noise.

Figure 3.13 plots the absolute estimated latent factors for the in-sample analysis. Since our

BAY approach selects 1 latent factor for the in-sample period, only the first estimated latent factor

is plotted.

Collectively, the empirical analysis in this section demonstrates the empirical relevance of the

BAY approach in nowcasting the US’s GDP for the time period considered. The results suggest

one factor is sufficient to summarise the dynamics within the US market.
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Figure 3.2: 95% confidence intervals of estimated number of latent factors by month, eolving over

the last 20 quarters. Left column is the results for R = 3, right column is the results for R = 6.

The first, second, and third column are nowcasting in the first, second, and third month of the

quarter respectively. The solid flat line represents the true number of factors, the red dashed line

represent the mean of estimated number of factors for that quarter. The gray shaded area is the

95% confidence intervals calculated using normal approximation based on 100 estimates.
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Figure 3.4 Averaged MANE ratios for R = 3
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Figure 3.5 Averaged MANE ratios for R = 6

Figure 3.6: Averages mean absolute nowcasting error ratios (relative to RW). Panel (a) is for R = 3,

panel (b) is for R = 6. The first, second, and third release are colored as dark gray, gray, and light

gray.
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Figure 3.7: Nowcasting performance over the last 20 quarters by 3 releases in each month. Each

row represents nowcasting in each month of the quarter. Black solid line represents the true GDP

value, and dashed lines with different knot types represent the GDP nowcasts with red, green, and

blue as release 1, 2, and 3.
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Figure 3.8: In-sample fit of latent factors for R = 6. Absolute value is used for the true latent

factors and in-sample fits. Black solid line represents the true value and red dashed line represents

the in-sample fitted value.
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Figure 3.9: Quarterly real GDP growth rate in US. Right to the dashed line is the nowcasting

horizon.
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Table 3.6: Detailed information of monthly series used in empirical study. Series names are adopted

from Federal Reserve Bank of St. Louis.

Release Block Names Transformation Lag

1st

Housing and Construction TTLCONS 3 2

International trade
BOPTEXP 3 2

BOPTIMP 3 2

Manufacturing

DGORDER 3 2

BUSINV 3 2

AMDMVS 3 2

AMTMUO 3 2

ADP national employment report ADP nonfarm 2 1

Labor
PAYEMS 2 1

JTSJOL 2 1

2nd

Labor UNRATE 2 2

International trade
IR 3 1

IQ 3 1

Retail and Consumption RSAFS 3 1

Survey
GACDISA066MSFRBNY 1 0

GACDFSA066MSFRBPHI 1 0

Manufacturing
INDPRO 3 1

WHLSLRIMSA 3 2

TCU 2 1

AMDMTI 3 2

Other
CPIAUCSL 3 1

PPIFIS 3 1

CPILFESL 3 1

Housing and Construction
HOUST 3 1

PERMIT 2 1

3rd

Housing and Construction HSN1F 3 1

Income DSPIC96 3 1

Other
PCEPI 3 1

GDPC1 3 1

Retail and Consumption PCEC96 3 1
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Figure 3.10: Distribution of estimated number of latent factors by month for the US market data.

The left, middle, and right columns are nowcasting in the first, second, and third month of the

quarter respectively.

Table 3.7: This table reports the percentages of reduction in MANE’s of both methods relative to

RW, i.e. (MANE −MANERW )/MANERW × 100 (in %) using the US market data.

Release 1st Month 2nd Month 3rd Month

1st -24.15% -18.17% -25.51%

2nd -23.27% -18.55% -14.06%

3rd -22.52% -18.18% -20.68%

Average -23.31% -18.30% -20.08%
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Figure 3.11: Nowcasting over 2003Q1 to 2016Q4 by 3 releases in each month for the US market data.

Black solid line represents the true GDP value, dashed lines with different knot types represent the

GDP nowcasts with red, green, and blue as release 1, 2, and 3.
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Figure 3.12: Averaged mean absolute nowcasting error ratios (relative to RW). The horizontal line

is 100% representing the baseline for RW. The first, second, and third release are colored as dark

gray, gray, and light gray for each month.
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Figure 3.13: Absolute values of estimated first latent factors of in-sample analysis in the US market

data.
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CHAPTER 4. NOWCASTING GDP USING DYNAMIC FACTOR MODEL

WITH UNKNOWN NUMBER OF FACTORS AND STOCHASTIC

VOLATILITY

In this Chapter, we further extend athe Bayesian approach proposed in the previous chapter

to allow time-varying volatilities in monthly series. We consider the particle Gibbs with backward

simulation algorithm for obtaining potential stochastic volatility (SV) in monthly series effciently.

We demonstrate the validity of our approach through simulation and explore the applicability of

our approach through an empirical study using the same US’s market data from previous chapter.

4.1 DFM with Stochastic Volatility

In this section, we extend the model in pervious chapter to allow the time-varying volatilities

within monthly series.

Likely to be presented in macroeconomic data, SV has potential to result in more efficient

estimates of coefficients and thus more accurate nowcasting if modeled accordingly. So we further

consider a SV model in this chapter. Following Follett and Yu (2019), we allow time-varying

variances across monthly series xt, by assuming its random noise εt in (3.1) has time dependent

covariance matrix Ωt, i.e. εt ∼ N(0,Ωt) where Ωt is specified as

Ωt = diag(eω1t , ..., eωnt)Ψdiag(eω1t , ..., eωnt). (4.1)

Here the correlation matrix between the errors Ψ is assumed to be constant over time. The

elements of the n × n matrix Ψ are denoted as ψij for i, j ∈ {1, ..., n} with ψij = 1 when i = j

and −1 ≤ ψij ≤ 1 when i 6= j. Thus, the variance of the ith series is Ωt[i,i] = exp(2ωit) and the

covariance between ith and jth series (i 6= j) is Ωt[i,j] = ψijexp(ωit + ωjt).

Since a form of slow, continuous, and time-varying parameters is much more desirable as men-

tioned in Primiceri (2005), Cogley and Sargent (2005), and Benati and Surico (2008), a random
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walk process is postulated to model the log time-varying standard deviations:

ωit = ωi,t−1 + eit, for i = 1, ..., n, and t = 1, ..., T, (4.2)

where eit
iid∼ N(0, τ2). Section 3.2 talks about how to estimate {ωt = (ω1t, ..., ωnt)

′ : t = 1, ..., T}

and the correlation matrix Ψ.

At any release date q, we have observations Xq = {x1, ...,xTq ,xi∈vq,Tq+1 , ...,xi∈vq,T } and Y =

{y1, y2, ..., yK}; latent variables Z, F, and W = {ω1, ...,ωT }; and model parameters Φsv =

{µ,Θ,A,Σ, β0,β1,β2,β3, β4, η
2, p1, ..., pR,Ψ}. The goals are to estimate model parameters and

latent variables using the observables, and to nowcast the current quarter GDP yK+1 at every

release date q for q = 1, ..., Q in month T for T = 3K + 1, 3K + 2, 3K + 3.

4.2 Estimating Stochastic Volatility via MCMC

In this section, we discuss estimation of latent time-varying volatility for DFMs with SV.

We complete our Bayesian framework for DFMs with SV specified in (4.1) by assigning prior

distributions to the SV components as follows. For model parameters that are in common (i.e.

Φi ∈ Φsv ∩Φcv), the same priors as the ones in previous chapter are assigned. The prior for the

initial state ωi1 (log standard deviation at t = 1) is, for i = 1, ..., n,

ωi1 ∼ N(aω, bω), (4.3)

where αω > 0, βω > 0 are pre-specified scalars.

The prior for τ2, which is the variance of the random process for log time-varying standard

deviation in (4.2), is

τ2 ∼ Inverse Gamma(αl, βl), (4.4)

where αl, βl are pre-specified scalars.

The prior for the correlation matrix Ψ in (4.1) is

Ψ ∼ LKJ(m) (4.5)
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where LKJ denotes the Lewandowski, Kurowicka and Joe (LKJ) distribution, proposed in Lewandowski

et al. (2009). Random matrices that follow LKJ(m) distribution have 1 on the diagonal elements

with off-diagonal elements between -1 and 1. LKJ(m) is a distribution over all possible correlation

matrices. If Ψ ∼ LKJ(m), then p(Ψ) ∝ |Ψ|m−1, where m > 0 is a shape parameter that controls

the placement of the mass of the distribution. When m = 1, it is a uninfomative prior over all

possible correlation matrices. When 0 < m < 1, it has higher probabilities placed on non-zero cor-

relations. When m→∞, it converges to the identity matrix. We choose m = 1 in our application.

It is worth noting that Ψ generated from LKJ(m) is automatically positive definite, thus leading

to guaranteed positive definiteness of Ωt based on the sandwitch form in (4.1).

The joint posterior distribution in this case is

p(Φsv,F,Z,W|Y,Xq) ∝ p(Y,Xq,Φ
sv,F,Z,W)

∝
Tq∏
t=1

p(xt|µ,Z,Ft,θ,ωt,Ψ)

T∏
t=Tq+1

p(xi∈vq,t |µ,Z,Ft,θ,ωt,Ψ)

×
K∏
k=2

p(yk|β,Z,F3k,F3k−1,F3k−2, yk−1, η
2)×

T∏
t=2

p(Ft|Ft−1,A,Σ)×
R∏
j=1

p(zj |pj)

×
T∏
t=1

p(ωt|τ2)× p(Φsv), (4.6)

where the first two pieces associated with Xq can be easily modeified from (3.6) and (3.10) by

replacing Ω with Ωt according to (4.1). The middle three pieces associated with Y, F, and Z

follow exactly as before. Equation (4.2) together with (4.3) give the joint distribution of ωt, i.e.∏T
t=1 p(ωt) ∝

∏n
i=1 p(ωi1)

∏n
i=1

∏T
t=2 p(ωit|ωit−1, τ2)p(τ2), where ωit ∼ N(ωi,t−1, τ

2). p(Φsv) is the

prior distribution for Φsv. The additional SV components do not change the estimation procedure

mentioned in the previous section other than a few more complete conditional distributions for the

SV components.

When estimating stochastic volatility in a Bayesian framework, two Metropolis procedures stand

out. The first one is an accept/reject algorithm proposed by Kim et al. (1998), which addressed the

problem of non-gaussian and non-linear when sampling the volatility parameters by transformations

and approximations using an offset mixture of normals. Applications include Clark and Ravazzolo
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(2014), Carriero et al. (2016), and Karlsson (2013). The other method can be found in Clark (2011),

Cogley and Sargent (2005) in their use of the algorithm of Jacquier et al. (2002), which broke down

the joint posterior of the vector of volatilities by considering the series of univariate conditional

densities, and constructed a Metropolis chain by allowing repeats of points in the sample sequence

in order to deal with costly-to-compute normalizing constants of the accept/reject density.

However, standard Metropolis procedure is no longer the preferred choice as pointed out in

Andrieu et al. (2010) due to the unreliable performance caused by poorly chosen proposal dis-

tributions and/or updating highly correlated variables independently. Instead, they proposed the

Particle Gibbs (PG) to sample from a potentially high dimensional posterior distribution and ar-

gued it was well suited for large nonlinear/non-Gaussian state-space models, such as a SV model.

Whiteley (2010) mentioned the PG sampler can have poorly mixing when the particle filter in-

heres severe degeneracy but can be improved by adding backward simulation step to the sampler.

Lindsten and Schön (2012) further derived an explicit PG sampler with backward simulation and

validated its legitimacy of being an MCMC method. They also showed that the mixing can be in-

creased considerably through backward simulation especially when a few particles are used and/or

the number of observations is large. Follett and Yu (2019) employed this idea to sample the SV

parameters {ωt = (ω1t, ..., ωnt)
′ : t = 1, ..., T} in the context of VAR. Because its efficiency in

filtering out high dimensional latent state variables, this particle Gibbs with backward simulation

algorithm is also implemented in our Bayesian framework. Estimate of log standard deviation is

computed as ω̂it = 1
G

∑G
g=1 ω

(g)
it for i = 1, ..., n and t = 1, ..., T . Appendix D provides the posterior

distributions for the SV components and details of the algorithm used to generate posterior samples

of volatility following Follett and Yu (2019).

We assume all priors are independent. Following standard MCMC procedure, we derive the

complete conditional distributions for each parameter and latent variables, and obtain posterior

samples by simulating from these individual complete conditionals iteratively. More specifically, we

obtain the posterior distribution p(Φi|Φsv
−i,Y,Xq,F,Z,W) where Φi is the ith element of Φsv and

Φsv
−i contains all the parameters except for Φi, and the posterior distribution for latent variables
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including p(Ft|Φsv,Y,Xq,Z,W) for all t, p(Z|Φsv,Y,Xq,F,W), and p(W|Φsv,Y,Xq,F,Z). The

additional SV components are estimated by posterior means, by Φ̂ = 1
G

∑G
g=1 Φ(g) and ω̂it =

1
G

∑G
g=1 ω

(g)
it for i = 1, ..., n and t = 1, ..., T . Appendix D provides the posterior distributions for

all model parameters and latent variables.

For model with SV components, the nowcasts follows exactly as equations in Section 3.2.2 since

the SV components are not directly involved in the nowcasting equations.

4.3 Bayesian Approach in Nowcasting: Simulation Evidence

In this section, through numerical simulation, we investigate three questions on our BAY ap-

proach in nowcasting setting when SV is considered. The first question is, whether it can identify

the number of latent factors r correctly. The second question is, whether it can produce reliable

nowcasting results. And the third question is, whether it can estimate the latent factors Ft. We an-

swer these three questions by evaluating estimation of the number of latent factors r, out-of-sample

nowcasting performance, and in-sample estimation of Ft and SV. The simulation has following

set-ups:

Simulation In this simulation, we add SV as specified in Section 4.1. We shrink n to 30 to

compromise the additional burden of Particle Gibbs with backward simulation algorithm and let

(n1, n2, n3) = (10, 10, 10) in this case. The following parameters are used to generate SV process:

Ψ is simulated from LKJ(1); ωi1 is simulated from N(0, 1); and τ2 = 0.1.

Again, 100 Monte Carlo sample paths are generated. For each data set, we nowcast the last

20 quarters’ GDP’s after each release during the 3 months in the quarter. Model parameters and

latent variables are estimated based on the most recent past 10 years of data up to the nowcasting

month of that quarter, i.e. T = 121, 122, 123 for each K+1. The hyper-parameter values are set as

follows: (αω, βω) = (0, 1) for the Normal prior of ωi1 in (4.3) for simplicity; and (αl, βl) = (2, 1/n)

for the Inverse Gamma prior of τ2 in (4.4) such that the prior has infinite variance. The number

of particle P is chosen to be 5. For parameters and hyper-parameters that are not mentioned here
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will have the same set-up with simulation study in previous chapter. The data release structure

also follows previous chapter.

4.3.1 Estimating the Number of Latent Factors

The primary task for the simulation is to investigate if our BAY approach can estimate the

number of factors when there is additional estimation burden for latent SV components. Therefore,

we focus on nowcasting using R = 6 only.

Figure 4.1 shows the distribution of the 6,000 estimated number of latent factors in each month

for the simulation study. Consistent with the findings of simulation study in the previous chapter,

the distribution of the estimated number of latent factors remains similar no matter which month

we are in when doing nowcasts The distribution of the estimated number of factors remains the

same as in the previous chapter when R = 6, except that the propotions of the peaks are slightly

lower. This is due to the additional estimation burden for SV latent variables.

In Figure 4.2, present the 95% naive confidence interval based on these 100 estimates of the

number of latent factors over 20 quarters period by month. The true r = 4 line falls into the CIs

most of the time, but not as promising as than the previous chapter when R = 6. This indicates

that we lose some power of identifying the correct number of factors when carrying out additional

task of estimating SV. We conclude jointly from Figure 4.1 and Figure 4.2, our BAY approach can

adquately estimate the number of latent factors in a nowcasting framework when R is appropriately

chosen.

4.3.2 Out-of-sample Nowcasting Performance

Out-of-sample nowcasting performance is assessed based on 20 one-step-ahead nowcastings av-

eraged across the 100 data sets. MANEs defined in the previous chapter are used as a measure of

nowcasting accuracy. Figure 3.6 shows the ratios (in percentages) of MANE’s of our BAY approach

to the MANE of RW in 9 combinations of 3 releases and 3 nowcasting months, averaged across

100 data sets. The horizontal line is 100% representing the baseline for RW, with first, second,
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Figure 4.1: Distribution of estimated number of latent factors by month when the true number of

factors r = 4. The first, second, and third columns represent nowcasting in the first, second, and

third month of the quarter respectively. In each subplot, on the x-axis is the estimated number of

factors, the height of the bars represent the porpotion of the estimated number of factors.

and third release colored in dark gray, gray, and light gray respectively. Bars shorter than the

reference line indicates that nowcasts are better than RW, otherwise worse than RW. Figure 4.3

suggests, moving from the first month to the third month, there are significant reductions in terms

of MANE’s. Comparing MANEs between releases in the same month, there is no significant change

in MANEs from the first release to the second release, however, the third release sees a significant

decrease in MANEs comparing to the second release.

Table 4.1, the numerical summary of MANE reduction relative to RW for both simulations

confirm the above observations. The BAY approach beats RW in terms of nowcasting errors.

Comparing MANEs to the simulation in the previous chapter with R = 6, the latter has slightly

better MANEs across all nine combinations of 3 releases and 3 nowcasting months due to the reason

that the model is more parsimonious than the model with SV, thus retain higher nowcasting power.
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Table 4.1: This table reports the percentages of reduction in MANE’s relative to RW, i.e. (MANE−
MANERW )/MANERW × 100 (in %).

Release 1st Month 2nd Month 3rd Month

1st -10.25% -26.23% -47.90%

2nd -10.02% -27.87% -49.80%

3rd -27.08% -48.13% -67.87%

Average -15.78% -34.08% -55.19%

To see how nowcasts results capture the trends of GDP, we choose one data set at random

and look at its nowcasting performance across last 20 quarters. Figure 4.4 shows the nowcasting

performance. The first, second, and third row are trend plots of nowcasts over the last 20 quarters

in the first, second, and third month respectively. In each subplot, the curves colored in red, green

and blue with different line types and knot types represent the nowcast results based on the first,

second, and third release dates in a given month of a given quarter respectively. Our BAY approach

gives reasonable nowcasting trend from the very first release in the first month all the way to the

last release in the third month of a quarter. Nowcastings based on the 3rd release are slightly closer

to the true trend comparing to nowcasts based on the 1st and 2nd release in the same month. Also

improvement can be spotted when moving from nowcasts in the first month to nowcasts in the

third month.

4.3.3 Estimation of Latent Variables

To assess the precision in the estimated latent state variables, we further look at the in-sample

estimation of latent dynamic factors and SV for the same randomly chosen data set the previous

section. The in-sample analysis uses balanced information of the first 100 months of the data

(t = 1, ..., 100).

Figure 4.5 plots the estimated in-sample fit of the first four latent factors versus the true value.

The absolute value is plotted against each other since as mentioned previously, the factors are

identifiable up to a change of sign. Figure 4.5 shows that the estimated latent factors are close to
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the true factors, which confirms that by introducing Assumption F and Assumption M, the latent

factors are identifiable.

To see if the the Particle Gibbs with backward simulation algorithm can effectively capture

the time-varying volatility structure, we summarize in Figure 4.6 and Figure 4.7 the estimated

SV components over the in-sample period. Figure 4.6 is the heat map of the difference between

estimated correlation matrix and the true value, i.e. (Ψ̂ −Ψ) where Ψ̂ is the posterior mean of

the correlation matrix. Positive differences are colored in blue, negative differences are colored in

red with lighter color represents a smaller difference. A majority of the area colored in either light

color or white in the heat map indicates we have a reasonable estimation of correlation matrix.

Figure 4.7 is the trend plots of the estimated log time-varying standard deviations versus the true

value for each individual monthly series, i.e. {ω̂i1, ..., ω̂iT } for all i where ω̂it the posterior meam of

log standard deviation of ith series at month t. We see that for most of the 30 series, the estimated

log time-varying standard deviation (red dashed line) is very close to the true value (black line),

indicating the Particle Gibbs with backward simulation algorithm indeed does a decent job of

estimating the stochastic volatility well.

In summary, our simulation results suggest that the BAY method can estimate the number of

latent factors correctly, has the ability to estimate the latent dynamic factors and SV well and

produce reliable nowcasting results.

4.4 Bayesian Approach in Nowcasting: Empirical Evidence

In this section, we examine the empirical performance of our BAY method in nowcasting the

US’s quarterly GDP growth rate when we assume time-varying volatilities within monthly series.

Information about empirical data can be found in the pervious chapter.

In each month, there are 56(quarters)×3(releases)=168 estimates of the number of factors.

Figure 4.8 shows the distribution of the estimated number of latent factors by month. Consistently

over the 3 nowcasting months, the estimated number of latent factors is 1 approximately 90% of the

time, with the rest 10% all concentrated on 2 and completely dies off at 3 for both. This suggests
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that for these particular 30 US market macroeconomic series, 1 factor is sufficient to summarise

the information.

Figure 4.9 plots the evolution of the out-of-sample GDP nowcasts over the last 56 quarters in

each month based on 3 releases. In each subplot, the solid curve is the real GDP, while 3 other

curves in different colors, line types and knot types represent nowcasting results from 3 different

release dates. In general, our approach capture the trend of real GDP reasonably well. For the

period prior to the 2008 to 2009 recession, nowcasts do not reflect much difference. During the

recession, nowcasts have a clear lag in predicting the economy’s downfall, but successfully capture

the bouncing back trend when the economy recovers from the stress period.

The measure of nowcasting errors, MANE, can be computed in the same fashion as in simula-

tion study. Figure 4.10 plots the relative ratios of MANEs. Three columns are for 3 nowcasting

months, and 3 bars in each month represent 3 different release dates. The horizontal line located

at 100% is the reference line for RW. Table 4.2 provides numerical comparisons relative to RW.

The last row of Table 4.2 reports the averages of percentages of reduction in MANEs relative to

RW across all 3 releases for that month. On average, the percentages of reduction in nowcasting

errors increases noticeably when moving from the 1st month (21.56% reduction), to the 2nd month

(26.02% reduction), then decreases slightly in the 3rd month (25.18% reduction). In general, unlike

simulation study, Figure 4.10 and Table 4.2 indicate that as more data become available through

the quarter, only some releases improve the nowcasting in terms of MANEs.

Table 4.2: This table reports the percentages of reduction in MANE’s of both methods relative to

RW, i.e. (MANE −MANERW )/MANERW × 100 (in %) using the US market data.

Release 1st Month 2nd Month 3rd Month

1st -20.92% -30.96% -28.45%

2nd -22.84% -24.79% -26.39%

3rd -20.91% -22.30% -20.69%

Average -21.56% -26.02% -25.18%



www.manaraa.com

74

Figure 4.11 plots the absolute estimated latent factors for the in-sample analysis. Since our BAY

approach selects 1 latent factor for the in-sample period, only the first estimated latent factor is

plotted. Figure 4.12 shows the estimated volatility (i.e. Ωt[i,i] for all i) for each individual monthly

series over the in-sample period. It is clear that the volatility is time-varying for all monthly series

considered in this chapter.

Collectively, the empirical analysis in this section demonstrates the empirical relevance of the

BAY approach in nowcasting the US’s GDP for the time period considered. The results suggest

one factor is sufficient to summarise the dynamics within the US market.
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Figure 4.2: 95% confidence intervals of estimated number of latent factors by month, eolving over

the last 20 quarters. The first, second, and third column are nowcasting in the first, second, and

third month of the quarter respectively. The solid flat line represents the true number of factors,

the red dashed line represent the mean of estimated number of factors for that quarter. The gray

shaded area is the 95% confidence intervals calculated using normal approximation based on 100

estimates.
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Figure 4.3: Averages mean absolute nowcasting error ratios (relative to RW). The first, second,

and third release are colored as dark gray, gray, and light gray.
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Figure 4.4: Nowcasting performance over the last 20 quarters by 3 releases in each month. Each

row represents nowcasting in each month of the quarter. Black solid line represents the true GDP

value, and dashed lines with different knot types represent the GDP nowcasts with red, green, and

blue as release 1, 2, and 3.
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Figure 4.5: In-sample fit of latent factors for R = 6. Absolute value is used for the true latent

factors and in-sample fits. Black solid line represents the true value and red dashed line represents

the in-sample fitted value.
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Figure 4.7: Estimated stochastic volatility (ω̂it) for each individual series of in-sample analysis. In

each subplot, the x-axis is the month of the in-sample period, on the y-axis is the value of ω̂it.

Black line represents the true value with red dashed line represents estimate. Index of the monthly

series in on top of each subplot.
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Figure 4.8: Distribution of estimated number of latent factors by month for the US market data.The

left, middle, and right columns are nowcasting in the first, second, and third month of the quarter

respectively.
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Figure 4.9: Nowcasting over 2003Q1 to 2016Q4 by 3 releases in each month for the US market data.

Black solid line represents the true GDP value, dashed lines with different knot types represent the

GDP nowcasts with red, green, and blue as release 1, 2, and 3.
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Figure 4.10: Averaged mean absolute nowcasting error ratios (relative to RW). The horizontal line

is 100% representing the baseline for RW. The first, second, and third release are colored as dark

gray, gray, and light gray for each month.
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data.
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Figure 4.12: Estimated stochastic volatility (Ω̂t[i,i] = exp(2ω̂it)) for each individual series of in-

sample analysis in the US market data. Index of the monthly series in on top of each subplot.
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CHAPTER 5. SUMMARY AND DISCUSSION

In this dissertation, we develop a Bayesian approach to provide a way to deal with the unbal-

anced feature of the data set in a real-time nowcasting framework. In Chapter 2, we consider the

number of latent factors is fixed and known and assume a relatively simple release pattern. We

evaluate our BAY method based on its estimation accuracy in latent factors and nowcasting per-

formance for the quarterly GDP and compare the nowcasting performance to the GRS approach.

The simulation study suggests that in terms of estimation accuracy in factors, both of the BAY and

GRS approaches can produce accurate estimated factors. In terms of nowcasting performance, the

two methods are comparable with BAY being slightly better in sense of resulting in smaller now-

casting errors. Our simulation results suggest that the BAY method has the potential to estimate

the dynamic factor models well and produce reliable nowcasting results. We exam the viability

in empirical analysis using Chinese market data and demonstrates the empirical relevance of the

BAY approach in nowcasting China’s GDP for the time period considered. These results, however,

don’t suggest that we should completely abandon the GRS approach. In fact, (as we mentioned)

for the last 3 releases in this dataset, GRS performs better than BAY in the 1st and 3rd nowcasting

months.

In Chapter 3, we consider the number of factors is unknown and modify our BAY approach such

that it can estimate the number of latent factors and other model parameters in a single statistical

framework. In Chapter 4, we further extend our model to allow stochastic volatilities within

monthly series. We evaluate our approach in a pseudo-real-time nowcasting set-up by mimic a

realistic release pattern in simulation studies and analyze the US’s market data. In the simulation

studies considered in Chapter 3 and 4, we evaluate our BAY method based on its estimation

accuracy of the number of latent factors and factors themselves, and nowcasting performance for

the quarterly GDP, with constant volatility or SV. In terms of estimation accuracy of the number of
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factors, the BAY approach can estimate the true number of factors. In terms of estimation accuracy

in factors, the BAY approach can produce accurate estimated factors for both constant volatility

and SV. In terms of nowcasting performance, the BAY approach produces better nowcasts in the

sense of resulting in smaller nowcasting errors comparing to RW. Our simulation results suggest

that the BAY method can estimate the number of latent factors, the dynamic factor models well and

produce reliable nowcasting results. The empirical analyses demonstrate the empirical relevance of

the BAY approach in nowcasting the US’s GDP for the time period considered. The results suggest

one factor is sufficient to summarise the dynamics within the US market. The slight improvement

in MANEs and obvious dynamics in estimated volatility suggest SV is better to be considered into

the DFM when nowcasting US’s GDP.

Real-time nowcasting plays a crucial role in terms of policy-making and long term forecasting.

In this dissertation, we develop a Bayesian MCMC-based method for inferences of DFMs for real

time nowcasting. We demonstrate, through simulation studies and empirical analysis, the proposed

Bayesian framework can (i) identify the number of factors correctly, (ii) estimate latent dynamic

factors and stochastic volatility accurately, (iii) provide reliable real-time nowcasting results. The

MCMC techniques developed here are generic that they can be applied to nowcast a wide range of

economic indicators of interest, such as inflation rates, trade exports (or imports), and exchange

rates, etc.
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APPENDIX A. CHAPTER 2 APPENDIX

A.1 Identification Assumptions

In this appendix, we provide Assumption F and Assumption M adapted from Stock and Watson

(2002) to deal with identification issue. The two sets of assumptions are as follows.

Assumption F on factors and factor loadings, are

• F1.
Θ′Θ

n
→ Ir×r,

• F2. E(F′tFt) = Σff where Σff is a diagonal matrix with diagonal elements σ2ii > σ2jj ∀ i < j.

Assumption F1 inhibits Θ to be orthonormal. In additional with the assumption F2, the factor

loadings are identifiable up to a change of sign.

Assumption M on moments of errors εt = (e1t, ..., ent)
′ are

• M1. E(eitejt) = τij , lim
n→∞

n−1
∑n

i=1

∑n
j=1 |τij | <∞.

• M2. lim
n→∞

n−1
∑n

i=1

∑n
j=1 |cov(eiteis, ejtejs)| <∞.

Assumption M1 allows εt to be weakly correlated across series. Normality is not assumed, but

Assumption M2 limits the size of fourth moments.

A.2 Posterior Distributions

In this appendix, we present the full conditional posterior distributions and a MCMC algorithm

to draw posterior samples. Most parameters have closed form full conditional distribution, allowing

for a straightforward Gibbs sampling method. However, Ω does not have closed form posterior

distribution. In this case, we insert an independent Metropolis-Hastings (MH) sampler within

Gibbs sampler to generate posterior samples for Ω.
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A.2.1 Sampling the mean of monthly series µ

The full conditional of mean of monthly series, µ, is a multivariate normal distribution:

µ|X(q,T ),F,Θ,Ω ∼ N(Uµ,W
−1
µ ), (A.1)

where

Wµ = (T − 1)Ω−1 + 1′vq,T (1vq,TΩ1′vq,T )−11vq,T + In×n,

Uµ = W−1
µ

[ T−1∑
t=1

Ω−1(xt −ΘFt) + (1′vq,T (1vq,TΩ1′vq,T )−11vq,T )(xT −ΘFT )
]
.

A.2.2 Sampling the factor loadings matrix θ

The full conditional of factor loadings, θ, is a multivariate normal distribution:

θ|X(q,T ),F,Ω ∼ N(Uθ,W
−1
θ

), (A.2)

where Ct = In×n ⊗ F′t, and

Wθ =
T−1∑
t=1

C′tΩ
−1Ct + Inr×nr + C′T1′vq,t(1vq,TΩ1′vq,T )−11vq,TCT ,

Uθ = W−1
θ

[ T−1∑
t=1

C′tΩ
−1(xt − µ) + C′T1′vq,T (1vq,TΩ1′vq,T )−11vq,T (xT − µ)

]
.

A.2.3 Sampling the covariance in monthly series Ω

The posterior for Ω is

P (Ω|·) ∝
T−1∏
t=1

P (xt|Ft,θ,Ω)× P (xi∈vq,T |FT ,θ,Ω)× P (Ω)

∝ |Ω|−(T−1)/2e
− 1

2
tr

[∑T−1
t=1 (xt−µ−Ctθ)(xt−µ−Ctθ)′Ω

−1
]

× |Ω|−(νθ+n+1)/2e
− 1

2
tr

[
1
n
Ω−1

In×n

]
× |1vq,TΩ1′vq,T |

−1/2e
− 1

2
tr

[
1vq,T (xT−µ−CTθ)1′vq,T (xT−µ−CTθ)′(1vq,TΩ1′vq,T )−1

]
,
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which is not in closed form. Note that the first two pieces to yields Ω has an inverse Wishart

distribution iW (ΨΩ, νΩ), where ΨΩ =
∑T−1

t=1 (xt − µ−Ctθ)(xt − µ−Ctθ)′ + 1
nIn×n, and νΩ =

T − 1 + νθ. Therefore, we can propose Ω∗ using iW (ΨΩ, νΩ), and use the last piece in the full

conditional, denote as q(Ω), to construct the acceptance-rejection rate. That is the proposal Ω∗ is

accepted with probablity

A(Ω∗|Ωc) = min
{

1,
q(Ω∗)

q(Ωc)

}
,

where Ωc denotes the current state of Ω.

A.2.4 Sampling the AR(1) coefficients aj

For j = 1, ..., r, the full conditional of each AR(1) coefficient, aj , is a truncated normal distri-

bution:

P (aj |fj,1, ..., fj,T , σ2j ) =



0 if aj ≤ −1

φ(
aj − µaj
σaj

)

Φ(
1− µaj
σaj

)− Φ(
− 1− µaj
σaj

)

if − 1 < aj < 1

0 if aj ≥ 1

(A.3)

where µaj =

∑T
t=2 fj,tfj,t−1

σ2j +
∑T

t=2 f
2
j,t−1

and σ2aj =
σ2j

σ2j +
∑T

t=2 f
2
j,t−1

.

A.2.5 Sampling the variance in factor equations σ2j

For j = 1, ..., r, the full conditional of σ2j is an inverse Gamma distribution:

σ2j |fj,1, ..., fj,T , aj ∼ iG(αj , βj), (A.4)

where αj = αs + (T − 1)/2 and βj = βs +
∑T

t=2(fj,t − ajfj,t−1)2/2.
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A.2.6 Sampling the coefficients associated with factors β

The full conditional of coefficients associated with factors in GDP equation, β, is a multivariate

normal distribution:

β|F,Y, η2 ∼ N(Uβ,W
−1
β

), (A.5)

where F̃3k = [1,F′3k,F
′
3k−1,F

′
3k−2, yk−1]

′, and

Wβ =

K∑
k=2

F̃3kF̃
′
3k/η

2 + I(3r+2)×(3r+2),

Uβ = W−1
β

K∑
k=2

F̃3kyk/η
2.

A.2.7 Sampling the variance in GDP equation η2

The full conditional of the variance in GDP equation, η2, is a inverse Gamma distribution:

η2|F,Y,β ∼ iG(αη, βη), (A.6)

where αη = αh+(K−1)/2 and βη = βh+
∑K

k=2(yk−β0−β
′
1F3k−β′2F3k−1−β′3F3k−2−β4yk−1)2/2.

A.2.8 Sampling the latent factors Ft

This section provides a way to understand the derivation of posterior distribution of Ft from

the point of GLS’s view.

The posterior distribution for Ft will have different form depending on t. The most general

cases are, for 3 < t < 3K, k = 2, ...,K. t can be written as t = 3k − i, for some k and i = 0, 1, 2,

depending on which month of quarter k we are in. If i = 0, we are in the third month of quarter k,

if i = 1, we are in the second month of quarter k, and, if i = 2, we are in the first month of quarter

k. Then, at t = 3k − i, Ft enters the joint likelihood through four parts, xt, Ft+1, Ft−1, and yk.

Therefore, we can write
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xt − µ

Ft+1

Ft−1

fyk(i)


=



Θ

A

A−1

β′i+1


Ft +



εt

ut+1

−A−1ut

νk


≡ Ỹ = X̃Ft + ε̃,

where fyk(i) is a function of i depending on yk, defined as

fyk(i) =



yk − β0 − β′2Ft−1 − β′3Ft−2 − β4yk−1 if i = 0

yk − β0 − β′1Ft+1 − β′3Ft−1 − β4yk−1 if i = 1

yk − β0 − β′1Ft+2 − β′2Ft+1 − β4yk−1 if i = 2

(A.7)

Therefore, we have

Ỹ =



xt − µ

Ft+1

Ft−1

fyk(i)


, X̃ =



Θ

A

A−1

β′i+1


, ε̃ =



εt

ut+1

−A−1ut

νk


,

and

var(ε̃) = Σ̃ =



Ω 0 0 0

0 Σ 0 0

0 0 (A′Σ−1A)−1 0

0 0 0 η2


.

By weighted regression, 3 < t < 3K, k = 2, ...,K, t = 3k − i, draw

Ft|Ỹ, X̃, Σ̃ ∼ N((X̃′Σ̃
−1

X̃)−1X̃′Σ̃
−1

Ỹ, (X̃′Σ̃
−1

X̃)−1). (A.8)

For other t, the posterior distribution for Ft is of the same form, with some deletion done to

Ỹ, X̃, and Σ̃. For example, if t = 1, since we don’t have F0 and y0, delete entries corresponding

to Ft−1 and fyk(i) in Ỹ, X̃, and Σ̃. If t = 2, 3, since we don’t have y0, delete entry corresponding

to fyk(i) in Ỹ, X̃, and Σ̃. If 3K < t < T , since we don’t have yK+1, delete entry corresponding

to fyK (i) in Ỹ, X̃, and Σ̃. If t = T , since we don’t have FT+1 and yK+1, first delete entries
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corresponding to FT+1and fyK+1(i) in Ỹ, X̃, and Σ̃. Secondly, assume we are at (q, T ), change

entry corresponding to xi∈vq,T in Ỹ, X̃, and Σ̃.
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APPENDIX B. CHAPTER 2 SUPPLEMENTAL MATERIAL

In this supplemental document, we provide some additional information that is not covered in

Chapter 2 due to space limit. In Section B.1, we report the investigation for burn-in period for

simulation study. In Section B.2, we compare the parameter estimation from release to release for

simulation study. In Section B.3, we provide further inference for empirical study. In Section B.4,

we provide the details for monthly data series used in empirical study.

B.1 Burn-in Period For Simulation Study

In this section, we report the investigation for burn-in period that is needed for MCMC chain

to converge in simulation study. We save the posterior samples that are used in nowcasting cal-

culations, which are A, β, and Ft from the first iteration to the 5000th iteration for Simulation

1. In Figure B.1, posterior draws for aj are against iteration. In Figure B.2, posterior draws for

β0,β4 against iteration. In Figure B.3, posterior draws for β1,β2,β3 against iteration. In Figure

B.4, posterior draws for Ft for the 1st, 50th, 500th, 5000th are plotted overlaid on each other.

Figure B.1, B.2, and B.3 suggest that from the very first iteration, the posterior draws for A

and β, stay close to the true value and the variation in posterior draws stay stable. Figure B.4 also

suggests there is negligible difference between posterior draws for Ft from the first iteration and

later iterations. Therefore, we conclude 5,000 iterations is enough for burn-in period.

B.2 Inference for Simulation Study

In this section, we compare the parameter estimation from release to release, in order to explain

the MANE behaviors for GRS and BAY approach that we discovered in Chapter 2.

For BAY approach, let {(α(q,T )
K+1)(g)}(g) be the set of posterior samples for parameter α based

on release q of month T in quarter K + 1, α can be A and β. Naive Kolmogorov−Smirnov tests
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are performed to compare {(α(1,T )
K+1)(g)}(g) with {(α(2,T )

K+1)(g)}(g) and {(α(3,T )
K+1)(g)}(g), for all months

in a quarter, and all nowcasting quarters. None of the test fail to reject the null hypothesis, which

suggests there is no statistically significant difference between posterior samples for A or β based

on the first, second, or third release, no matter which month of the quarter we are in for all quarters

of nowcast.

Another key set of parameters that is used in nowcasting equation is the latent factors for

the quarter of nowcast. The time-series for factors are constructed as follows. For example,

when nowcasting y39 at all three releases of month 115, F115 is estimated directly by F̂115, F116

is estimated by ÂF̂115, and F117 is estimated by Â2F̂115. Similarly, when nowcasting y39 at

all three releases of month 116, F115 is estimated directly by F̂115, F116 is directly estimated

by F̂116, and F117 is estimated by ÂF̂116. When nowcasting y39 at all three releases of month

117, F115 is estimated directly by F̂115, F116 is estimated by F̂116, and F117 is directly esti-

mated by F̂117. Then similar things are done for y40, y41, and so on. Therefore, factors in the

first month are (F̂115, ÂF̂115, Â
2F̂115, F̂118, ÂF̂118, Â

2F̂118, ...), factors in the second month are

(F̂115, F̂116, ÂF̂116, F̂118, F̂119, ÂF̂119, ...), and factors in the third month are (F̂115, F̂116, F̂117, F̂118,

F̂119 ,̂̂F120, ...), posterior means are used as parameter estimation. In Figure B.5 and B.6, factors

based on all three releases when nowcasting in the first, second, and third month are presented in

left, middle, and right column respectively, with first row being the first factor, second row being

second factor, and third row being third factor. Estimations based on 3 releases are colored in red,

green, and blue, with different node type.

There are no noticeable changes from release to release in all the three factor across all three

months for BAY approach. Meanwhile, for GRS approach, no noticeable changes from release to

release in the first factor across all three months. Some changes can be spotted for the second

factors. From release to release, the estimations for third factor changes significantly in all three

months. Therefore, given the fact that estimations for A, β, and Ft does not change much from

release to release in the same month for BAY approach, the MANE does not change much from

release to release in the same month. And, given the fact that estimations for A, β stay same from
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release to release in the same month, estimations for Ft changes from release to release in the same

month, the MANE changes accordingly.

B.3 Inference for Empirical Study

In this section, we provide the reason why there is not much variation in BAY nowcasts from

release to release, in all the three month for the empirical study.

Using posterior means as sample mean and posterior standard deviations as estimated sample

standard deviation, 95% confidence intervals for β1,β2,β3 based on each release in each month are

calculated and plotted in Figure B.7, B.8, and B.9. We see that all the confidence intervals contains

0, which means all the β1,β2,β3 are not statistically significant different from 0. Meanwhile, the

confidence interval for β4 based on each release in each month is contained in Table B.1. All CIs in

table 1 do not contain 0 but contain 1 implies β4 is statistically significant different from 0 but not

statistically different from 1 for all releases in all month. Therefore, the nowcasts are dominated by

the previous quarter’s GDP value, and the coefficient associated with lagged GDP does not change

much from release to release, hence, little difference can be found for nowcasts between releases.

Table B.1: 95% CIs for β4 based on all releases in all three month of the quarter.

Rleases First Month Second Month Third Month

RL1 (0.691,1.046) (0.686,1.050) (0.685,1.040)

RL2 (0.689,1.047) (0.689,1.047) (0.686,1.042)

RL3 (0.697,1.047) (0.696,1.054) (0.691,1.040)

RL4 (0.690,1.040) (0.693,1.039) (0.684,1.042)

RL5 (0.695,1.052) (0.692,1.045) (0.687,1.039)

RL6 (0.700,1.049) (0.696,1.044) (0.681,1.049)

RL7 (0.710,1.056) (0.695,1.054) (0.704,1.056)

RL8 (0.701,1.047) (0.712,1.058) (0.707,1.052)
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B.4 Information of Monthly Series in Empirical Study

In this section, we provide the information of the 117 monthly data series that are used in

empirical study, including name of the series and the transformation used in order to achieve

stationary of the series. Transformation 1, 2, 3 stand for 12-month growth rate, 12-month difference

and no transformation respectively.
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Table B.2: Information of the monthly data series. Transformation 1, 2, 3 stand for 12-month

growth rate, 12-month difference and no transformation respectively.

Name of the Series Transformation

National Interbank Offered Rate: Weighted Avg: NIBFC: 7 Days 2

National Interbank Offered Rate: Weighted Avg: NIBFC: 30 Days 2

National Interbank Offered Rate: Weighted Avg: NIBFC: 60 Days 2

National Interbank Offered Rate: Weighted Avg: NIBFC: 90 Days 2

Central Bank Base Interest Rate: Required Reserve 2

CN: Central Bank Benchmark Interest Rate: Reserve Requirement: Excess 2

Savings Deposits Rate 2

Time Deposits Rate: 1 Year 2

Base Lending Rate: Capital Construction: Less than 10 Year 2

Index: Shanghai Stock Exchange: Composite 1

Index: Shanghai Stock Exchange: Industrial 1

Index: Shanghai Stock Exchange: Utilities 1

Index: Shenzhen Stock Exchange: Composite 1

PE Ratio: Shanghai Stock Ex: All Shares: Wgt Avg by Issued Volume 2

Market Capitalization: Shanghai Stock Exchange: Stocks 1

LIBOR: BBA: Euro: 3 Months : Frequency Transform 2

FTSE 100 INDEX 1

The Bombay Stock Exchange Sensitive Index (Sensex) 1

The KOSPI Index 1

Kuala Lumpur Stock Exchange Composite Index 1

The Bangkok SET Index 1

Jakarta Stock Price Index 1

The Philippine Stock Exchange PSEi Index 1

TWSE Index 1

Hang Seng Index 1

Dividend Yield: Hang Seng Index 2

Dividend Yield: The Australian All Ordinaries Index 2

Dividend Yield: The New Zealand All Ordinaries Index 2
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Table B.2 continued

Name of the Series Transformation

CPI: Food (sa) 1

CPI: Clothing (sa) 1

CPI: Traffic, Communications (sa) 1

CPI: Residence (sa) 1

CPI: Aggregate (sa) 1

Retail Price Index, Aggregate sa 1

Exports fob 1

Imports cif 1

Commodity Building Sold: Total 1

CN: Commodity Bldg Selling Price 1

CN: Floor Space Started: Total 1

CN: Floor Space under Construction: Commodity Bldg (CB) 1

Government Surplus or Deficit 1

Fixed Asset Investment: Levels, Total (revised) S.A. 1

Real Estate Investment, Total (SA) 1

Foreign Direct Investment Utilized 1

FDI: Utilized: Foreign Enterprises 1

Spot Exchange Rate: Period Avg: SAFE: RMB to US Dollar 1

Spot Exchange Rate: Period Avg: SAFE: RMB to Hong Kong Dollar 1

Spot Exchange Rate: Period Avg: SAFE: RMB to British Pound 1

Spot Exchange Rate: Period Avg: SAFE: RMB to Canadian Dollar 1

Spot Exchange Rate: Period Avg: SAFE: RMB to Swedish Krone 1

Spot Exchange Rate: Period Avg: SAFE: RMB to Singapore Dollar 1

Spot Exchange Rate: Period Avg: SAFE: RMB to Australian Dollar 1

Nominal effective exchange rate 1

Real effective exchange rate, sa 1

Producer Price Index: Industrial Products (yoy%) 3

Producer Price Index: Industrial Products: Producer Goods (yoy%) 3

Producer Price Index: Industrial Products: Producer Goods: Excavation (yoy%) 3

Producer Price Index: Industrial Products: Producer Goods: Raw Material (yoy%) 3

Producer Price Index: Industrial Products: Producer Goods: Manufacturing (yoy%) 3

Producer Price Index: Industrial Products: Consumer Goods (yoy%) 3

Producer Price Index, Consumer Goods: Food (yoy%) 3

Producer Price Index, Consumer Goods: Clothing, (yoy%) 3

Producer Price Index, Consumer Goods: Daily Use Articles (yoy%) 3
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Table B.2 continued

Name of the Series Transformation

Index of Market Prices: All Primary Commodities Index 1

Index of Market Prices: Non Fuel Primary Commodities Index 1

Index of Market Prices: Food 1

Index of Market Prices: Beverages 1

Index of Market Prices: Agricultural Raw Materials 1

Index of Market Prices: Metals 1

Index of Market Prices: Energy Index 1

Index of Market Prices: Petroleum, average crude price 1

Index of Market Prices: Sugar Caribbean (N.Y.) Free Market 1

Index of Market Prices: Uranium Index 1

Exports: Primary Products 1

Exports: Manufactures 1

Exports: Animal and Vegetable Oils, Fats and Waxes (AVFW) 1

Exports: Chemicals and Related Products (CRP) 1

Exports: Crude Materials, Inedible, Except Fuels (CM) 1

Exports: Food and Live Animals Chiefly For Food (FLA) 1

Exports: Machinery and Transport Equipment (MTE) 1

Exports: Manufactured Goods Chiefly by Materials (MG) 1

Exports: Mineral Fuels, Lubricants and Related Materials (MFLM) 1

Exports: Miscellaneous Manufactured Articles (MMA) 1

Imports: Primary Products 1

Imports: Manufactures 1

Imports: Animal and Vegetable Oils, Fats and Waxes (AVFW) 1

Imports: Beverages and Tobacco (BT) 1

Imports: Chemicals and Related Products (CRP) 1

Imports: Crude Materials, Inedible , Except Fuels (CM) 1

Imports: Food and Live Animals Chiefly For Food (FLA) 1

Imports: Machinery and Transport Equipment (MTE) 1

Imports: Manufactured Goods Chiefly by Materials (MG) 1

Imports: Mineral Fuels, Lubricants and Related Materials (MFLM) 1

Imports: Miscellaneous Manufactured Articles (MMA) 1
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Table B.2 continued

Name of the Series Transformation

Retail Sales of Consumer Goods, Total (revised) S.A. 1

CN: Coincident Index 1

CN: Business Cycle Signal 1

Industrial Production: Household Washing Machines 1

Industrial Production: Household Refrigerator 1

Industrial Production: Cloth 1

Industrial Production: Processed Crude Oil 1

Industrial Production: Diesel Oil 1

Industrial Production: Power Generated 1

Industrial Production: Steel 1

Industrial Production: Steel Products 1

Industrial Production: Iron Alloy 1

Industrial Production: Cement 1

Industrial Production: Automobiles 1

Industrial Production: Automobiles: Cars 1

Industrial Production: Automobiles: Loading Vehicles 1

Financial Institution Loans 1

Financial Institution Deposits 1

Money Supply M0 1

Money Supply M1 1

Money Supply M2 1

CN: Required Reserve Ratio 2

Foreign Reserves 1
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Figure B.1: Time-series plot for posterior samples of A for Simulation 1.
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Figure B.2: Time-series plot for posterior samples of β0, β4 for Simulation 1.
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Figure B.3: Time-series plot for posterior samples of β1,β2,β3 for Simulation 1.
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Figure B.4: Posterior samples of Ft from 1st, 50th, 500th, 5000th iteration for Simulation 1.
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Figure B.5: Ft estimation based on three releases in all month of the quarter for GRS approach.

From top to bottom, are estimations for the first, second and third latent factors. From left to

right, are estimations in first, second, and third month of the quarter. Three releases are colored

in red, green, abd blue with different node type.
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Figure B.6: Ft estimation based on three releases in all month of the quarter for BAY approach.

From top to bottom, are estimations for the first, second and third latent factors. From left to

right, are estimations in first, second, and third month of the quarter. Three releases are colored

in red, green, abd blue with different node type.
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Figure B.7: 95% CIs for β1,β2,β3 estimation based on different releases in the first month. CIs

based on different releases are color coded. RL stands for release, dotted line represents 0.



www.manaraa.com

112

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β11

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5
β12

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β13

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β21

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β22

RL

1 2 3 4 5 6 7 8
−

1.
5

0.
5

β23

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β31

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β32

RL

1 2 3 4 5 6 7 8

−
1.

5
0.

5

β33

RL

RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8

Figure B.8: 95% CIs for β1,β2,β3 estimation based on different releases in the second month. CIs

based on different releases are color coded. RL stands for release, dotted line represents 0.
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Figure B.9: 95% CIs for β1,β2,β3 estimation based on different releases in the third month. CIs

based on different releases are color coded. RL stands for release, dotted line represents 0.



www.manaraa.com

114

APPENDIX C. CHAPTER 3 APPENDIX

In this appendix, we present the full conditional posterior distributions. Most parameters have

closed form full conditional distribution, allowing for a straightforward Gibbs sampling method.

However, Ω does not have closed form posterior distribution. In this case, we insert an independent

Metropolis-Hastings (MH) sampler within Gibbs sampler to generate posterior samples for Ω.

C.1 Sampling the mean of monthly series µ

The full conditional of mean of monthly series, µ, is a multivariate normal distribution:

µ|X(q,T ),Z,F,Θ,Ω ∼ N(Uµ,W
−1
µ ), (C.1)

where

Wµ = TqΩ
−1 +

T∑
t=Tq+1

(1′vq,t(1vq,tΩ1′vq,t)
−11vq,t) + In×n,

Uµ = W−1
µ

[ Tq∑
t=1

Ω−1(xt −ΘZFt) +

T∑
t=Tq+1

(1′vq,t(1vq,tΩ1′vq,t)
−11vq,t)(xt −ΘZFt)

]
.

C.2 Sampling the factor loadings matrix θ

The full conditional of factor loadings, θ, is a multivariate normal distribution:

θ|X(q,T ),µ,Z,F,Ω ∼ N(Uθ,W
−1
θ

), (C.2)

where Ct = In×n ⊗ (ZFt)
′, and

Wθ =

Tq∑
t=1

C′tΩ
−1Ct +

T∑
t=Tq+1

C′t1
′
vq,t(1vq,tΩ1′vq,t)

−11vq,tCt + InR×nR,

Uθ = W−1
θ

[ Tq∑
t=1

C′tΩ
−1(xt − µ) +

T∑
t=Tq+1

C′t1
′
vq,t(1vq,tΩ1′vq,t)

−11vq,t(xt − µ)
]
.
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C.3 Sampling the covariance in monthly series Ω

The posterior for Ω is

P (Ω|·) ∝
Tq∏
t=1

P (xt|µ,Θ,Z,Ft,Ω)×
T∏

t=Tq+1

P (xi∈vq,t |µ,Θ,Z,Ft,Ω)× P (Ω)

∝ |Ω|−Tq/2e
− 1

2
tr

[∑Tq
t=1(xt−µ−Ctθ)(xt−µ−Ctθ)′Ω

−1
]

×
T∏

t=Tq+1

|1vq,tΩ1′vq,t |
−1/2e

− 1
2
tr

[
1vq,t (xt−µ−Ctθ)1′vq,t (xt−µ−Ctθ)

′(1vq,tΩ1′vq,t )
−1

]

× |Ω|−(νθ+n+1)/2e
− 1

2
tr

[
1
n
Ω−1

In×n

]
,

which is not in closed form. Note that the first and third pieces to yields Ω has an inverse

Wishart distribution iW (ΨΩ, νΩ), where ΨΩ =
∑Tq

t=1(xt−µ−Ctθ)(xt−µ−Ctθ)′+ 1
nIn×n, and

νΩ = Tq + νθ. Therefore, we can propose Ω∗ using iW (ΨΩ, νΩ), and use the middle piece in the

full conditional, denote as q(Ω), to construct the acceptance-rejection rate. That is the proposal

Ω∗ is accepted with probablity

A(Ω∗|Ωc) = min
{

1,
q(Ω∗)

q(Ωc)

}
,

where Ωc denotes the current state of Ω.

C.4 Sampling the AR(1) coefficients aj

For j = 1, ..., R, the full conditional of each AR(1) coefficient, aj , is a truncated normal distri-

bution:

P (aj |fj,1, ..., fj,T , σ2j ) =



0 if aj ≤ −1

φ(
aj − µaj
σaj

)

Φ(
1− µaj
σaj

)− Φ(
− 1− µaj
σaj

)

if − 1 < aj < 1

0 if aj ≥ 1

(C.3)
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where µaj =

∑T
t=2 fj,tfj,t−1

σ2j +
∑T

t=2 f
2
j,t−1

and σ2aj =
σ2j

σ2j +
∑T

t=2 f
2
j,t−1

.

C.5 Sampling the variance in factor equations σ2
j

For j = 1, ..., R, the full conditional of σ2j is an inverse Gamma distribution:

σ2j |fj,1, ..., fj,T , aj ∼ iG(αj , βj), (C.4)

where αj = αs + (T − 1)/2 and βj = βs +
∑T

t=2(fj,t − ajfj,t−1)2/2.

C.6 Sampling the coefficients associated with factors β

The full conditional of coefficients associated with factors in GDP equation, β = (β0,β
′
1,β

′
2,β

′
3, β4)

′,

is a multivariate normal distribution:

β|Z,F,Y, η2 ∼ N(Uβ,W
−1
β

), (C.5)

where F̃3k = [1, (ZF3k)
′, (ZF3k−1)

′, (ZF3k−2)
′, yk−1]

′, and

Wβ =
K∑
k=2

F̃3kF̃
′
3k/η

2 + I(3R+2)×(3R+2),

Uβ = W−1
β

K∑
k=2

F̃3kyk/η
2.

C.7 Sampling the variance in GDP equation η2

The full conditional of the variance in GDP equation, η2, is a inverse Gamma distribution:

η2|Z,F,Y,β ∼ iG(αη, βη), (C.6)

where αη = αh + (K − 1)/2 and βη = βh +
∑K

k=2(yk − β
′F̃3k)

2/2.

C.8 Sampling the latent factors Ft

This section provides a way to understand the derivation of posterior distribution of Ft from

the point of GLS’s view.
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The posterior distribution for Ft will have different form depending on t. The most general

cases are, for 3 < t < 3K, k = 2, ...,K. t can be written as t = 3k − i, for some k and i = 0, 1, 2,

depending on which month of quarter k we are in. If i = 0, we are in the third month of quarter k,

if i = 1, we are in the second month of quarter k, and, if i = 2, we are in the first month of quarter

k. Then, at t = 3k − i, Ft enters the joint likelihood through four parts, xt, Ft+1, Ft−1, and yk.

Therefore, we can write



xt − µ

Ft+1

Ft−1

fyk(i)


=



ΘZ

A

A−1

β′i+1Z


Ft +



εt

ut+1

−A−1ut

νk


≡ Ỹ = X̃Ft + ε̃,

where fyk(i) is a function of i depending on yk, defined as

fyk(i) =



yk − β0 − β′2ZFt−1 − β′3ZFt−2 − β4yk−1 if i = 0

yk − β0 − β′1ZFt+1 − β′3ZFt−1 − β4yk−1 if i = 1

yk − β0 − β′1ZFt+2 − β′2ZFt+1 − β4yk−1 if i = 2

(C.7)

Therefore, we have

Ỹ =



xt − µ

Ft+1

Ft−1

fyk(i)


, X̃ =



ΘZ

A

A−1

β′i+1Z


, ε̃ =



εt

ut+1

−A−1ut

νk


,

and

var(ε̃) = Σ̃ =



Ω 0 0 0

0 Σ 0 0

0 0 (A′Σ−1A)−1 0

0 0 0 η2


.

By weighted regression, 3 < t < 3K, k = 2, ...,K, t = 3k − i, draw

Ft|Ỹ, X̃, Σ̃ ∼ N((X̃′Σ̃
−1

X̃)−1X̃′Σ̃
−1

Ỹ, (X̃′Σ̃
−1

X̃)−1). (C.8)
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For other t, the posterior distribution for Ft is of the same form, with some deletion done to Ỹ,

X̃, and Σ̃. For example, if t = 1, since we don’t have F0 and y0, delete entries corresponding to

Ft−1 and fyk(i) in Ỹ, X̃, and Σ̃. If t = 2, 3, since we don’t have y0, delete entry corresponding to

fyk(i) in Ỹ, X̃, and Σ̃. If 3K < t < T , since we don’t have yK+1, delete entry corresponding to

fyK (i) in Ỹ, X̃, and Σ̃. If t = T , since we don’t have FT+1 and yK+1, delete entries corresponding

to FT+1and fyK+1(i) in Ỹ, X̃, and Σ̃. Also we need to change entries corresponding to xi∈vq,t in

Ỹ, X̃, and Σ̃, for t = Tq + 1, ..., T .

C.9 Sampling the binary indicator zj

The full conditional of zj for j = 2, ..., R is of the form

P (zj |·)

∝
Tq∏
t=1

P (xt|µ,Z,Ft,Θ,Ω)
T∏

t=Tq+1

P (xi∈vq,t |µ,Z,Ft,Θ,Ω)

×
K∏
t=2

P (yk|Z, F̃3k,β, η
2)P (zj |pj),

Notice that zj only takes value of 0 or 1, so let

P (zj=1|·)
P (zj=0|·)

= γ1 × γ2 × γ3

where

γ1 = γb1γ
u
1 ,

γ2 =
exp{− 1

2η2
∑K

k=2(yk − β0 − β
′
1Z1F3k − β′2Z1F3k−1 − β′3Z1F3k−2 − β4yk−1)2}

exp{− 1
2η2
∑K

k=2(yk − β0 − β
′
1Z0F3k − β′2Z0F3k−1 − β′3Z0F3k−2 − β4yk−1)2}

,

γ3 =
pj

1− pj
,
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and

γb1 =
exp{−1

2

∑Tq
t=1(xt − µ−ΘZ1Ft)

′Ω−1(xt − µ−ΘZ1Ft)}
exp{−1

2

∑Tq
t=1(xt − µ−ΘZ0Ft)′Ω

−1(xt − µ−ΘZ0Ft)}
,

γu1 =
exp{−1

2

∑T
t=Tq+1(1vq,t(xt − µ−ΘZ1Ft))

′(1vq,tΩ1′vq,t)
−1(1vq,t(xt − µ−ΘZ1Ft))}

exp{−1
2

∑T
t=Tq+1(1vq,t(xt − µ−ΘZ0Ft))′(1vq,tΩ1′vq,t)

−1(1vq,t(xt − µ−ΘZ0Ft))}
.

where Z1 is evaluated at zj = 1, Z0 is evaluated at zj = 0. Then it follows that

zj |· ∼ Bernoulli(p∗j ) (C.9)

where p∗j = γ
1+γ , and γ = γ1 × γ2 × γ3.

C.10 Sampling the binary probability pj

The full conditional of pj for j = 2, ..., R is of the form

pj |zj = 1 ∼ Beta(αp + 1, βp)

pj |zj = 0, π ∼ (1− π∗)1(pj=0) + π∗Beta(αp, βp + 1) (C.10)

where π∗ =
πjβp

αp+βp−πjαp .

C.11 Sampling the zero inflation probablity π

The full conditional of π is given by

P (π|·) ∝
∏

j:pj=0

(1− πj)
∏

j:pj 6=0

πj
p
αp−1
j (1− pj)βp−1

B(αp, βp)
× παπ−1(1− π)βπ−1

B(απ, βπ)

∝
∏

j:pj=0

(1− πj)× [π
απ+

∑R
j=2 j1{pj 6=0}−1(1− π)βπ−1]

which is not in closed form. Note that the last two pieces to yields π has a Beta distribution

Beta(απ +
∑R

j=2 j1{pj 6=0}, βπ). Therefore, we can propose π∗ using this Beta distribution, and use

the first piece in the full conditional, denote as q(π), to construct the acceptance-rejection rate.

That is the proposal π∗ is accepted with probablity
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A(π∗|πc) = min
{

1,
q(π∗)

q(πc)

}
,

where πc denotes the current state of π.
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APPENDIX D. CHAPTER 4 APPENDIX

In this appendix, we present the full conditional posterior distributions for SV components

and the Particle Gibbs with backward simulation algorithm that is used to generate posterior

samples for the volatility parameters {ωt = (ω1t, ..., ωnt)
′ : t = 1, ..., T}. The full conditional

posterior distributions for other parameters can be easily obtained by simpliy replace Ω with

Ωt = diag(ω1t, ..., ωnt)Pdiag(ω1t, ..., ωnt) in the Appendix C.

D.1 Sampling the correlation matrix Ψ

The posterior of Ψ is

p(Ψ|·) ∝
Tq∏
t=1

p(xt|µ,Θ,Z,Ft,ωt,Ψ)
T∏

t=Tq+1

p(xi∈vq,t |µ,Θ,Z,Ft,ωt,Ψ). (D.1)

which is not in closed form, so Ψ can be sampled from its conditional posterior using a random

walk Metropolis step. That is sampling n(n− 1)/2 elements from N(upper tri(Ψc),Σψ) truncated

at [−1, 1] and organizing into n× n matrix Ψ∗. Accept Ψ∗ with probability

A(Ψ∗|Ψc) = min
(

1,

∏Tq
t=1 f(Ψ∗|µ,xt,Θ,Z,Ft, ωt)

∏T
t=Tq+1 f(Ψ∗|µ,xi∈vq,t ,Θ,Z,Ft, ωt)∏Tq

t=1 f(Ψc|µ,xt,Θ,Z,Ft, ωt)
∏T
t=Tq+1 f(Ψc|µ,xi∈vq,t ,Θ,Z,Ft, ωt)

)
where Ψc means the current state. Σψ is a tuning parameter that can be updated using the first

B iterations of the chain and then held fixed.

D.2 Sampling the variance in volatility equation τ 2

The full conditional of the variance in volatility equation, τ2, is a inverse Gamma distribution:

τ2|ω1, ...,ωt ∼ iG(ατ , βτ ), (D.2)
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where ατ = nαl + n(t− 1)/2 and βτ = nβl +
∑n

i=1

∑T
t=2(ωit − ωi,t−1)2/2.

D.3 Sampling the volatility parameters ωt using Particle Gibbs with

backward simulation

The Particle Gibbs with backward simulation algorithm used to sample the volatility parameters

details as follows. Let g = 1, ..., G represent the MCMC iteration, p = 1, ..., P represent the particle

index. Assume we are at iteration g + 1, we have (ωpt )
(g) for all p ∈ {1, ..., P} and t = 1, ..., T , and

backward trajectory indices (Bt)
(g) for all t = 1, ..., T . Φ(g) denotes all other parameters and latent

variables in the pervious iteration.

1. For t = 1

(a) Draw (ωp1)
(g+1) from proposal distribution, g(ω1) for p ∈ {1, ..., P}\B(g)

1 . For p = B
(g)
1 ,

set (ω
B

(g)
1

1 )(g+1)=(ω
B

(g)
1

1 )(g).

(b) For p ∈ {1, ..., P}, calculate weights w̃p1 =
f(x1|ω(g)

1 ,Ψ(g)
)f(ω(g)

1 )

g(ω(g)
1 )

.

(c) Normalize the weights, for all p = 1, ..., P , wp1 = w̃p1/
∑P

p=1 w̃
p
1.

2. For t = 2, ..., T

(a) For p ∈ {1, ..., P}\B(g)
t , draw jpt with P (jpt = i) ∝ wit−1f(xt|(ω̂it)(g+1),Ψ(g)) where

(ω̂it)
(g+1) = E(ωt|ωt−1 = (ωit−1)

(g+1)). If t = Tq + 1, ..., T , use xi∈vq,t .

(b) Draw (ωpt )
(g+1) from f(ω|ωt−1 = (ω

jpt
t−1)

(g+1), (τ2)(g)) for p ∈ {1, ..., P}\B(g)
t . For p =

B
(g)
t , set (ω

B
(g)
t

t )(g+1)=(ω
B

(g)
t

t )(g).

(c) Draw j
B

(g)
t

t with P (j
B

(g)
t

t = i) ∝ wit−1f((ωB
(g)
t )(g+1)|ωt−1 = (ωit−1)

(g+1), (τ2)(g)).

(d) For p ∈ {1, ..., P}, calculate weights w̃pt =
f(xt|(ωp

t )
(g+1),Ψ(g)

)

f(xt|(ω
j
p
t
t )(g+1),Ψ(g)

)
.

(e) Normalize the weights,for all p = 1, ..., P , wpt = w̃pt /
∑P

p=1 w̃
p
t .

3. Perform backward simulation:

(a) Sample B
(g+1)
T with P (B

(g+1)
T = p) = (wpT )(g+1), set (ωT )(g+1) = (ω

B
(g+1)
T

T )(g+1).
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(b) For t = T − 1, ..., 1:

i. Calculate (wpt|t+1)
(g+1) ∝ (wpt )

(g+1)f((ωt+1)
(g+1)|(ωpt )(g+1), τ (g))

for p = 1, ..., P .

ii. Draw B
(g+1)
t with P (B

(g+1)
t = p) = (wpt|t+1)

(g+1), set (ωt)
(g+1) = (ω

B
(g+1)
t

t )(g+1).

4. Collect {(ω1)
(g+1), ..., (ωT )(g+1)} and {B(g+1)

1 , ..., B
(g+1)
T }.

The proposal distribution, g, from which to draw proposals for the first volatility parameter,

ω1 is chosen to be a multivariate normal distribution where the mean is the sample variance of the

residuals corresponding to a PCA on the balanced panel using the first R PCs. The covariance

matrix is taken to be the identity matrix. The specification of the proposal distribution should be

problem-specific

D.4 A illustration of conditional auxiliary particle filter with backwards

simulation

In this section, we illustrate a run of the conditional auxiliary particle filter with backwards

simulation for t = 6 and P = 5.

A conditional auxiliary particle filter step involves prespecifying a trajectory ωB1
1 ,..., ωBTT with

backward trajectory indices B1, ..., BT which is guaranteed to survive the sequential Monte Carlo

(SMC) step. Suppose, here, that the conditioning particle can be identified by the trajectory

B1 = 3, B2 = 2, B3 = 4, B4 = 4, B5 = 4, B6 = 2, i.e. trajectory ω3
1, ω

2
2, ω

4
3, ω

4
4, ω

4
5, ω

2
6 is

prespecified and is guaranteed to survive the particle filter SMC step. At t = 1, we draw P − 1 = 4

(i.e. for p = 1, 2, 4, 5) proposals from prespecified proposal distribution g for the first volatility

parameter ω1. ω3
1 is prespecified (i.e. take value from previous iteration in MCMC). Next we

assign importance weight {w1
1, ..., w

5
1} to all particles at t = 1 in an important sampling faction and

thus we have a set of particles and corresponding weights {ωp1;w
p
1}Pp=1. This is called a weighted

particle system. Given a weighted particle system {ωp1:t−1;w
p
t−1}Pp=1 at t− 1, we first sample P − 1

parent index jpt , and a index jBtt corresponding to the prespecified partile ωBtt . Particles at time t
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are then generated given all parents. Weights are then updated to account for the mismatch between

the likelihood at the proposals and the prespecified partile. Thus, we obtain {ωp1:T ;wpT }Pp=1 at the

end of the auxiliary particle filter.

In Table D.1, black arrows represent the corresponding ancestral lineage for each wpT . One would

sample {ωp6 : p = 1, ..., 5} based on calculated weights and would only have 5 unique trajectories

available for sampling at the end of a plain conditional auxiliary particle filter. But at t = 1

and t = 2 due to degeneracy, there is only 1 possibility to be sampled. The backwards simulator

works through the particles from t = T to t = 1 and provides indices corresponding to a backward

trajectory. The backwards simulator in Table D.1 happened to sample one element from the

conditioning particle at t = 5.
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Table D.1: Graphical representation of a run of the conditional auxiliary particle filter with back-

wards simulation when t = 6 and P = 5. The left figure represents all ancestral trajectories with

grey lines. In the right figure, the black lines represent the ancestral lineage for {ωp6 : p = 1, ..., 5}.
The blue path represents a sample that could be taken by the backwards simulator.
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